Addition Theorem - Kahouteiri

Japanese: 加法定理 - かほうていり
Addition Theorem - Kahouteiri

There are many types of addition theorems in mathematics, but here we will introduce the following two as the most common ones.

(1) The addition theorem of trigonometric functions is the following formula.


(2) Addition theorem in probability Suppose there are k events E1 , E2 , ..., Ek , and no two of them occur simultaneously. In other words, E1 , ..., Ek are mutually exclusive events. In this case, the probability p that at least one of E1 , ..., Ek occurs is equal to the sum of the probabilities p( Ei ) of the occurrence of each event Ei.

p=p(E 1 )+p(E 2 )+……+p(E k )
This is the addition theorem in probability. In classical probability theory, this theorem is proven as follows: "Suppose there are a total of N possible cases, and each case is equally likely to occur. If there are n i possible cases corresponding to event E i , then p(E i )=n i /N. On the other hand, since no two of E 1 ,……,E k can occur simultaneously, the number of cases in which at least one of these k cases occurs is N=n 1 +……+n k . Therefore,

When constructing probability theory axiomatically, the following property is considered to be an axiom regarding probability: "When E1 and E2 are mutually exclusive events, the probability p( E1 ∪E2 ) that at least one of E1 and E2 occurs is equal to the sum of p( E1 ) and p( E2 )."

[Shigeru Furuya]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

数学において加法定理とよばれているものはいろいろあるが、ここではもっとも一般的なものとして次の二つをあげる。

(1)三角関数の加法定理 次の公式をいう。


(2)確率における加法定理 k個の事象E1,E2,……, Ekがあって、このうちのどの二つも同時におこることはないとする。すなわちE1,……,Ekが排反事象であるとする。このときE1,……, Ekのうちの少なくとも一つがおこるという確率pは、各事象Eiのおこる確率p(Ei)の和に等しい。

  p=p(E1)+p(E2)+……+p(Ek)
これが確率における加法定理である。この定理は古典的な確率論では次のようにして証明される。「全部でN通りの場合があって、どの場合がおこるのも同様に確からしいとする。事象Eiに対応する場合がni通りであるとするとp(Ei)=ni/Nである。一方、E1,……, Ekのうちのどの二つをとっても同時におこることはないから、これらk個のうちの少なくとも一つがおこる場合の数はN=n1+……+nkである。したがって

である」。確率論を公理的に構成するときは、「E1、E2が排反事象であるとき、E1、E2のうちの少なくも一方がおこる確率p(E1∪E2)は、p(E1)とp(E2)の和に等しい」という性質を確率に関する公理と考える。

[古屋 茂]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Supersaturation - Kahouwa (English spelling) supersaturation

>>:  Carpospore - Carpospore

Recommend

Range finder - Sokkyogi

A general term for a device that measures distance...

Onshison - descendants of the shadows

One of the qualifications for the appointment of R...

Cotta, Gaius Aurelius

A Roman politician and poet from the 1st century B...

Suserihime-no-Mikoto

Daughter of Susanoo-no-Mikoto. When Oonamuchi-no-...

Fluid mechanics

Liquids and gases are collectively called fluids,...

Alfred Andersch

German author. Born in Munich on February 4th. At...

Round rock - Round rock

…In addition to the diameter of the pebble, the r...

Easy-care (English spelling)

Fabrics and clothing that do not require the hassl...

Proboscis monkey (English spelling: Tenguzaru)

This animal belongs to the family Cercopithecidae...

Leopold I (Holy Roman Emperor)

…But in Austria, the imperial throne that remaine...

Transantarctic Mountains

...The farthest point within the continent is cal...

Cetane number - Setanka (English spelling)

It is an index showing the ignition quality of di...

Freer Gallery of Art (English)

...With the backing of America's powerful eco...

Provisional payment - Karinoufu

...All of these effects arise according to the co...

Consonance (English)

(1) A musical note that is in a harmonious relati...