Operator method

Japanese: 演算子法 - えんざんしほう
Operator method

This is a method of solving equations that include differentiation and integration by regarding them as algebraic equations of operators (mappings). For example, the operation of differentiation can be symbolized and represented as D, and the first, second, ..., mth order derivatives of a function f ( t ) of t can be expressed as Df = f '( t ), D2f = f " ( t ), ...,
Dmff (m) ( t ),……,
And also,
D0f = 1 f = f ( t )
Then, Dm Dn = Dn Dm , and p(D) = Dn + a1 Dn -1 + ...
+a n-1 D +a n
This can be calculated in the same way as polynomials in terms of addition, subtraction, and multiplication. In other words, the differential equation f '( t ) + af ( t ) = h ( t )
is (D+a) fh ( t ). Therefore, if we can give the proper meaning to division, the answer is
f ( t )=(D+a) -1h ( t )
As such, attempts to solve differential equations using algebraic calculations have existed for a long time, but the method devised by British electrical engineer Heaviside in the 1890s is usually called the operator method. Heaviside's idea was ingenious, but it was about 50 years later that its mathematically rigorous justification was demonstrated using the Laplace transform and other techniques.

Heaviside noticed that differentiation and integration are inverse operations of each other,

and the operator p r is defined as p r p -r f = f . p corresponds to the differential operator D, and the relationship is g ( t ) = f ′ ( t ) = Df.

Multiplying both sides by p gives us the following:
Df( t )= pf ( t ) -pf (0)
Similarly,
D 2 f ( t )= p 2 f ( t )- p 2 f (0)+ pf ′(0)
Heaviside treated p defined in this way as if it were a number, and made functions of p correspond to functions of t . The correspondence is given in a table.

Recently, JG Mikusinski has given a new interpretation to arithmetic operations based on the following idea, expanding its applications and giving arithmetic operations a new face. Let us first recall that the set Z of all integers can not only be used for addition, subtraction, and multiplication, but also allows us to create fractions and divide them using the property that if ab = 0, then a or b is zero. Instead of Z, let us denote the set of continuous functions defined for a positive number x by C, and define addition and subtraction for the elements f and g of C as f ( tg ( t ), and multiplication as

If we define it as such, then, like Z, if ( f *g)( t ) ≡ 0, then f ( t ) ≡ 0 or g ( t ) ≡ 0 can be said to have the property that (≡ indicates that the function is identically equal to zero). Therefore, using the same idea as creating fractions from integers, if we create something equivalent to a "fraction" from C, it will be possible to perform the inverse operation of multiplication. The "fraction" of two continuous functions is called the Mikcinski operator. The Heaviside operator is a special case of the Mikcinski operator.

[Haruo Sunouchi]

"Mikusinski, translated by Hideyuki Matsumura, Shigetake Matsuura, and Koji Kasahara, 'Calculators', volumes 1 and 2 (1963, Shokabo)""Yoshida, Kosaku, 'Calculators' (1982, University of Tokyo Press)"

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

微分や積分を含む方程式を演算子(写像)の代数方程式とみなして解く方法をいう。たとえば、微分するという演算を記号化してDで表し、tの関数f(t)に対し、1階、2階、……m階の導関数をそれぞれ
  Df=f′(t),D2ff″(t),……,
   Dmf=f(m)(t),……,
とし、また、
  D0f=1・ff(t)
とすると、DmDn=DnDmとなり
  p(D)=Dn+a1Dn-1+……
   +an-1D+an
をつくると、これは加減乗法に関しては多項式と同様に計算できる。つまり、微分方程式
  f′(t)+af(t)=h(t)
は(D+a)fh(t)となる。したがって、割り算を適当に意味づけることができると、解は、
  f(t)=(D+a)-1h(t)
によって求められる。このように、微分方程式を代数的な計算で解こうという試みは古くからあったが、1890年代にイギリスの電気学者ヘビサイドが考案した方法を普通、演算子法とよんでいる。ヘビサイドの着想は巧妙であったが、ラプラス変換などを用いて数学的に厳密な正当性が示されたのは約50年後であった。

 ヘビサイドは、割り算として、微分と積分が互いに逆演算であることに着目し、

を定義し、演算子prprp-rffとなるものとして定義した。pは微分演算子Dに相当するものであるが、その関係はg(t)=f′(t)=Dfと置くと、

この両辺にpをほどこして、まとめると、
  Df(t)=pf(t)-pf(0)
同様にして、
  D2f(t)=p2f(t)-p2f(0)+pf′(0)
 ヘビサイドは、このように定義したpをあたかも数のように取り扱い、pの関数とtの関数を対応させた。その対応は表になって与えられている。

 最近ミクシンスキーJ. G. Mikusinskiは次のような考えから演算子法に新しい解釈を与え、その応用を拡大したので、演算子法は面目を一新している。整数全体の集合Zは加減乗法ができるばかりでなく、ab=0ならばaまたはbがゼロという性質から分数をつくり、除法が可能になったことをまず思い出そう。Zのかわりに、正の数xに対し定義された連続関数の全体をCで表し、Cの要素fgに加減法をf(tg(t)で定義し、乗法を

で定義すると、Zと同様に(f*g)(t)≡0ならばf(t)≡0またはg(t)≡0という性質をもつことがいえる(≡は、関数が恒等的にゼロに等しいことを示す)。よって、整数から分数をつくったのと同じ考えで、Cから「分数」に相当するものをつくると、積の逆演算が可能になる。二つの連続関数の「分数」をミクシンスキーの演算子という。なお、ヘビサイドの演算子はミクシンスキーの演算子の特別な場合になる。

[洲之内治男]

『ミクシンスキー著、松村英之・松浦重武・笠原皓司訳『演算子法』上下(1963・裳華房)』『吉田耕作著『演算子法』(1982・東京大学出版会)』

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Operational amplifier

>>:  King Yeonsan

Recommend

Cayor Kingdom - Cayor Kingdom (English spelling)

A small kingdom that existed in Senegal, the weste...

《Axel's Castle》

…He inherited the thorough and fair work of his f...

Birobidzhan (English spelling)

The capital of Evlei Autonomous Oblast in southeas...

Japanese dormouse (mountain mouse)

A small rodent mammal of the mouse family native t...

New Story of the Lantern

A collection of supernatural stories from the Ming...

Scapigliatura - Scapigliatura is (English spelling) Scapigliatura

An avant-garde literary movement that developed in...

Radcliffe Report

A report prepared in May 1959 by the Committee on ...

The Supreme Secret - Mujōhyō (English)

A type of treatise on Taoist doctrine compiled by ...

Sky Garden - Kuchuuteien

A series of short stories by Mitsuyo Kakuta. Five ...

Aulopodidae

...A similar species, A. damasi , appears in the ...

Naryshkinskoe Barokko (English spelling)

…The tent-shaped roof did not last long, disappea...

Yoshiya Uemura

⇒ Yoshiya Kamimura Kichiya ⇒ Yoshiya Source: About...

Liberius

[raw]? Died September 24, 366. Pope of the Roman E...

Gakuekisai - Gakuekisai

…His pen name was Bo-ju. His pen name was Hak-yi-...

Tawara Shonin

?-1600 A military commander from the Sengoku to O...