Continued fraction

Japanese: 連分数 - れんぶんすう
Continued fraction

Of the fractions

This form is called a continued fraction.

This is expressed as: Finitely cut continued fraction

can be simply converted to a fraction P n /Q n . A continued fraction is said to converge when the sequence converges to a single number ω, where ω is called the value of the continued fraction. For example,

In particular, the case where a 0 is an integer, b n is 1, and a n is a natural number is called a regular continued fraction. The expansion of the above formula is a regular continued fraction. Any irrational number can be expanded into a regular continued fraction in exactly one way, and conversely, a regular continued fraction always converges to represent an irrational number. In the case of , 1 and 2 appear alternately in the denominator. A regular continued fraction like this, which repeats from a certain point onwards, is called a cyclic continued fraction. A regular continued fraction representing an irrational number ω is a cyclic continued fraction if and only if ω is a solution to a quadratic equation with integer coefficients.

The approximate fraction P n /Q n of a regular continued fraction is P n+1 =P n a n +P n-1 ,
Qn +1 = Qnan + Qn -1
(n≧1, P0 =1, Q0 =0)
Therefore, P n Q n-1 -P n-1 Q n =(-1) n
Using these properties, continued fractions are useful for indeterminate equations, Diophantine approximations, and approximations of the roots of algebraic equations. For example, if a and b are integers, then ax-by=1, (a,b)=1
Consider the following linear equation. Expand a/b into a regular finite continued fraction:

Then,
x 0 =(-1) m-1 Q m-1 ,
y 0 =(-1) m-1 P m-1
gives one solution. All other solutions are x 0 +bt, y 0 +at (t is an integer).
This can be expressed as:

[Tsuneo Adachi]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

分数のうち

という形式を連分数という。これを簡単に

と表す。有限で切れる連分数

は単に分数Pn/Qnに直せる。その列が一つの数ωに収束するとき、連分数は収束するといい、ωを連分数の値と称する。たとえば

である。とくにa0が整数、bnが1、anが自然数の場合を正則連分数という。前式の展開が正則連分数である。任意の無理数はただ一通りに正則連分数に展開され、逆に正則連分数はつねに収束して無理数を表す。の場合、分母に1と2が交互に表れるが、このように、あるところから先が循環する正則連分数を循環連分数という。無理数ωを表す正則連分数が循環連分数であるための必要十分条件は、ωが整数係数の二次方程式の解となることである。

 正則連分数の近似分数Pn/Qn
  Pn+1=Pnan+Pn-1,
  Qn+1=Qnan+Qn-1
     (n≧1,P0=1,Q0=0)
という漸化式によって定まる。したがって
  PnQn-1-Pn-1Qn=(-1)n
なる関係が成り立つ。これらの性質を用いて、連分数は不定方程式、ディオファントス近似、代数方程式の根(こん)の近似値などに有効に用いられる。たとえばa、bを整数として
  ax-by=1, (a,b)=1
なる一次不定方程式を考える。a/bを正則有限連分数に展開して

とすると、
  x0=(-1)m-1Qm-1,
  y0=(-1)m-1Pm-1
によって一つの解が与えられる。他の解はすべて
  x0+bt, y0+at (tは整数)
と表せる。

[足立恒雄]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Federal Reserve System

>>:  Rembrandt - Rembrandt van Rijn

Recommend

Bidens frondosa (English spelling)

…[Hiroji Koyama]. . … *Some of the terminology th...

Cold region - Kanreichi

In Japan it refers to cold regions. Source: The Se...

Ship tonnage - Senpaku Tonnage

Tonnage is a unit of measurement used to indicate...

Salman Schocken

1877‐1959 Jewish publisher. A German Jew from Pose...

Marita

A late Paleolithic site near Irkutsk in Siberia, R...

North-South problem

It is said that Oliver Franks, chairman of Lloyds...

Ver Sacrum (English)

…Born in Vienna. In 1897 he founded the Secession...

Friedrich, J.

…Hittite was discovered to be a branch of the Ind...

Cobear

Also known as tsurukobea. A perennial vine of the ...

"Kikugasane Family Mirror" - A form inherited from Kikugasane

...Commonly known as "Okuni no Mistress"...

Whale Group - Whale Group

An organization of fishermen dedicated to whaling....

Ujigo (Kyoto)

...It was also an important area militarily, and ...

Juneau (English spelling)

The capital of the U.S. state of Alaska. It is loc...

rubidium

Rb. Atomic number 37. Periodic table group 1 alka...