Continued fraction

Japanese: 連分数 - れんぶんすう
Continued fraction

Of the fractions

This form is called a continued fraction.

This is expressed as: Finitely cut continued fraction

can be simply converted to a fraction P n /Q n . A continued fraction is said to converge when the sequence converges to a single number ω, where ω is called the value of the continued fraction. For example,

In particular, the case where a 0 is an integer, b n is 1, and a n is a natural number is called a regular continued fraction. The expansion of the above formula is a regular continued fraction. Any irrational number can be expanded into a regular continued fraction in exactly one way, and conversely, a regular continued fraction always converges to represent an irrational number. In the case of , 1 and 2 appear alternately in the denominator. A regular continued fraction like this, which repeats from a certain point onwards, is called a cyclic continued fraction. A regular continued fraction representing an irrational number ω is a cyclic continued fraction if and only if ω is a solution to a quadratic equation with integer coefficients.

The approximate fraction P n /Q n of a regular continued fraction is P n+1 =P n a n +P n-1 ,
Qn +1 = Qnan + Qn -1
(n≧1, P0 =1, Q0 =0)
Therefore, P n Q n-1 -P n-1 Q n =(-1) n
Using these properties, continued fractions are useful for indeterminate equations, Diophantine approximations, and approximations of the roots of algebraic equations. For example, if a and b are integers, then ax-by=1, (a,b)=1
Consider the following linear equation. Expand a/b into a regular finite continued fraction:

Then,
x 0 =(-1) m-1 Q m-1 ,
y 0 =(-1) m-1 P m-1
gives one solution. All other solutions are x 0 +bt, y 0 +at (t is an integer).
This can be expressed as:

[Tsuneo Adachi]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

分数のうち

という形式を連分数という。これを簡単に

と表す。有限で切れる連分数

は単に分数Pn/Qnに直せる。その列が一つの数ωに収束するとき、連分数は収束するといい、ωを連分数の値と称する。たとえば

である。とくにa0が整数、bnが1、anが自然数の場合を正則連分数という。前式の展開が正則連分数である。任意の無理数はただ一通りに正則連分数に展開され、逆に正則連分数はつねに収束して無理数を表す。の場合、分母に1と2が交互に表れるが、このように、あるところから先が循環する正則連分数を循環連分数という。無理数ωを表す正則連分数が循環連分数であるための必要十分条件は、ωが整数係数の二次方程式の解となることである。

 正則連分数の近似分数Pn/Qn
  Pn+1=Pnan+Pn-1,
  Qn+1=Qnan+Qn-1
     (n≧1,P0=1,Q0=0)
という漸化式によって定まる。したがって
  PnQn-1-Pn-1Qn=(-1)n
なる関係が成り立つ。これらの性質を用いて、連分数は不定方程式、ディオファントス近似、代数方程式の根(こん)の近似値などに有効に用いられる。たとえばa、bを整数として
  ax-by=1, (a,b)=1
なる一次不定方程式を考える。a/bを正則有限連分数に展開して

とすると、
  x0=(-1)m-1Qm-1,
  y0=(-1)m-1Pm-1
によって一つの解が与えられる。他の解はすべて
  x0+bt, y0+at (tは整数)
と表せる。

[足立恒雄]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Federal Reserve System

>>:  Rembrandt - Rembrandt van Rijn

Recommend

Ako King - Akoou

…She is a prostitute from Shimizuzaka who appears...

Documents in the womb - Tainai Monjo

Documents placed inside statues of Buddha and deit...

Canalo

Argentine tango band leader and composer. He taugh...

Homespun - Homespun (English spelling)

Originally, it was a woolen fabric made using thi...

Tadmor

…The ruins are located about 200 km northeast of ...

Shinzo Ueki

…In the Muromachi period, Sarugaku Noh performanc...

Imprimatura - Imprimatura

…In the second half of the 15th century, oil pain...

Orthoceratida

…the genus that represents the Orthoceradinida or...

First term - Ichigobun

〘noun〙 A form of property inheritance in the Middl...

Qiu Jin - Qiu Jin

A Chinese revolutionary in the late Qing Dynasty....

svara

…There is no soaring into the air or moving aroun...

Ichiden Sanshu - Ichiden Sanshu

...This fact shows that the cultivation rights es...

Kazama Jokichi

1902-1968 A social activist in the Showa era. Bor...

《Aktion》 - Aktion

...Schoenberg's tragic pathos, which called f...

Pietra dura (English spelling) [Italy]

The term refers to hard stones, such as gemstones,...