Proposition - nidai

Japanese: 命題 - めいだい
Proposition - nidai

A proposition is a combination of symbols that expresses some kind of assertion. However, it is also possible to interpret a proposition as the assertion itself. It is also possible to define a proposition as the (set of) circumstances that make the assertion it expresses possible. If we adopt the first interpretation, a proposition is also called a statement.

Now, if we break down a statement, that is, a proposition, we will eventually arrive at a proposition that, if broken down any further, would not be a proposition. For example, "Socrates is a man" is such a proposition. Such propositions are called atomic propositions, but conversely, starting from atomic propositions, we can construct increasingly complex propositions using logical operations such as "and" (conjunction, represented by the symbol ∧), "or" (disjunction, represented by the symbol ∨), "then" (implication, represented by the symbol ⇒), and "not" (negation, represented by the symbol ¬).

If a proposition is either true (T) or false (F), then between logical operations and the truth value of a proposition, we obtain a table-like truth table, where A and B are any propositions . In this way, propositional logic studies the relationships between propositions without going into the structure of atomic propositions, and it is the basis of predicate logic, which goes into the structure of atomic propositions.

[Arata Ishimoto]

[References] | Symbolic logic | Propositional logic
Truth table
©Shogakukan ">

Truth table


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

命題とは、なんらかの主張を表している記号の組合せである。しかし、命題とはその主張そのものであるという解釈も可能である。また、命題とは、それが表す主張を成立させるような状況(の集合)であるという定義も可能である。かりに、第一の解釈をとると、命題は言明ともよばれる。

 さて、言明、つまり命題を分解していくと、最後には、これ以上分解すると命題にならないような命題に到達する。たとえば、「ソクラテスは人である」は、このような命題である。こういった命題は原子的命題とよばれるが、逆に、原子的命題から出発して、「そして」(連言。記号∧で表す)、「あるいは」(選言。記号∨で表す)、「ならば」(含意。記号⇒で表す)、「でない」(否定。記号¬で表す)といった論理演算を用いて、しだいに複雑な命題を構成することができる。

 命題は真(T)か偽(F)のいずれかであるとすると、論理演算と命題の真偽(真理値)の間に、のようないわゆる真理表が得られる。ただし、AとBは任意の命題である。このように、原子的命題の構造に立ち入ることなしに、命題相互間の研究をするのが命題論理であって、原子的命題の構造にまで立ち入る述語論理の基礎となっている。

[石本 新]

[参照項目] | 記号論理学 | 命題論理学
真理表〔表〕
©Shogakukan">

真理表〔表〕


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Propositional logic

>>:  Vagus nerve

Recommend

Scrophulariaceae - Sesame grass

A perennial plant of the Scrophulariaceae family ...

Vinosgai (Beautiful Shellfish) - Vinosgai (English spelling) quohog

A bivalve mollusk of the Veneridae family. This sp...

Apollonios of Perga (English spelling)

He was born in the second half of the 3rd century ...

Beaumont, Francis

Born: circa 1584. Grace Dew, Leicestershire [Died]...

patrimonium Caesaris (English spelling)

...Indirect taxes, which had been collected by ta...

Crown shelf - It's a crown

〘Noun〙① A shelf for placing crowns. Later it was a...

Shimazaki Toson

Poet and author. His real name was Haruki. His ps...

excoriation

…There are the following distinctions: (1) excori...

Criquet

…This is one of the few cases in Europe and Ameri...

RBE - Reverse Beam Emission

Abbreviation for relative biological effectivenes...

Bayern - Bayern (English spelling)

Bavaria is a state that constitutes the Federal R...

Haniwa - Haniwa

These are unglazed clay objects that were arrange...

animateur

...The first period was from the founding of the ...

Inbreeding recessive

...However, since autosomal recessive genetic dis...