Radiation dose refers to the amount related to the energy absorption of radiation, but in a broad sense it includes exposure dose and dose equivalent. It usually refers to the amount of radiation absorbed energy divided by the mass of a substance, i.e. absorbed dose. Radiation is broadly divided into charged radiation (electrons and protons with kinetic energy, etc.) and uncharged radiation (X-rays and gamma rays, etc.). When charged radiation travels through a substance, it excites or ionizes molecules and atoms along its path. Uncharged radiation cannot directly excite or ionize molecules or atoms, but it generates charged radiation with kinetic energy through interactions with substances. Therefore, radiation provides energy to substances, exciting or ionizing molecules and atoms. The results are observed as physical, chemical, or biological effects of radiation. As the effects of radiation are related to the energy absorbed by a substance, the absorbed dose was defined as the radiation dose around 1953. The absorbed dose D is the quotient of the energy de of radiation delivered to a small volume of a substance divided by the mass dm of that volume. In other words, it is given by D = de/dm. The unit of absorbed dose was traditionally rad (radiation absorbed dose), with 1 rad = 100 erg/g = 10−2 J/kg, but in the new international unit, Gy (Gray) is used instead of rad. 1 J/kg = 1 Gy = 100 rad Absorbed dose can be applied to all radiation, but it is defined as the energy absorbed by a unit mass of a substance, and the name of the substance must usually be specified. For example, the absorbed dose in human tissue is called the tissue dose. Generally, when we talk about dose, we mean the absorbed dose mentioned above, but the exposure dose X and dose equivalent H are sometimes simply called radiation dose. The exposure dose is only used for X-rays and gamma rays. When the amount of ionization produced by secondary electrons or positive ions produced by X-rays or gamma rays in 0.001293 g of air (the mass of 1 cm3 of air under standard conditions) is 1 electrostatic unit, the exposure dose is 1 R (roentgen). However, currently, it is defined as X = dQ/dm. dQ is the absolute value of the sum of charges of one sign that are produced when all secondary electrons or positive ions set free by X-rays or gamma rays in a mass dm of air are completely stopped in the air. The unit of exposure dose is provisionally R. 1R = 2.58 × 10−4 C (coulomb)/kg, but R does not exist in the new SI units. When considering the biological effects of gamma rays and neutrons, neutrons generally have a greater effect than gamma rays even if the absorbed dose is the same. This is related to the difference in how the energy is transferred between the two, that is, linear energy transfer (LET; the energy transferred per unit length keV/μm when charged radiation travels through a substance). The radiation dose equivalent H, which is the absorbed dose D weighted by the quality factor Q related to LET, is used for the purpose of radiation protection. H = DQN, where N is a correction factor related to the dose rate (absorbed dose per unit time), etc., but is currently set to 1. The unit of dose equivalent has been remrem to distinguish it from absorbed dose. The new SI unit is sievert. In the case of a large-scale nuclear disaster such as a nuclear power plant accident, the sievert is used for the radiation dose that indicates the effect of radioactive materials on the human body. 100rem = 1Sv. The quality factor Q is 1 for X-rays, gamma rays, beta rays, and electron beams, 10 for neutrons with unknown energy, 10 for protons and deuterons, and 20 for alpha rays and heavy charged particles. The accumulated amount of radiation over a certain period of time (for example, one year) is called the cumulative radiation dose. The absorbed dose, exposure dose and dose equivalent per unit time are called the absorbed dose rate, exposure dose rate and dose equivalent rate, respectively, and are expressed in units such as rad·min−1, R·min−1 or rem·h−1. When uncharged radiation such as X-rays, gamma rays and neutrons generates secondary charged particles through interaction with a substance, the quotient obtained by dividing the sum of the initial kinetic energies gained by the charged particles by the mass of the substance is called kerma, and is expressed in units of rad or Gy. → Related topics Fukushima Daiichi Nuclear Power Plant | Radiation | Radiation damage Source : Heibonsha Encyclopedia About MyPedia Information |
放射線量とは放射線のエネルギー吸収に関係した量をいうが,広義には照射線量や線量当量を含む。通常は放射線の吸収エネルギーを物質の質量で除した量,すなわち吸収線量をいう。放射線は電荷をもつ荷電放射線(運動エネルギーを有する電子や陽子など)と電荷をもたない非荷電放射線(X線やγ線など)に大別される。荷電放射線は,ある物質中を進むとき,その道筋に沿って分子や原子を励起あるいは電離する。非荷電放射線は,直接,分子や原子を励起あるいは電離することはできないが,物質との相互作用により運動エネルギーを有する荷電放射線を発生する。したがって,放射線は物質にエネルギーを与えて,分子や原子を励起あるいは電離する。その結果が放射線による物理,化学あるいは生物学的影響などとして観察される。このように,放射線の影響は物質に吸収されたエネルギーに関係することから,1953年ころ放射線量として吸収線量が定義された。吸収線量Dは,ある物質中の微小体積に付与された放射線のエネルギーdeを,その体積のもつ質量dmで除した商である。すなわち,D=de/dmで与えられる。吸収線量の単位は,従来,rad(ラド,radiation absorbed doseの頭文字をとる)で, 1rad=100erg/g=10−2J/kgであったが,新しい国際単位では,radに代わってGy(グレイ,Grayの略)が用いられる。 1J/kg=1Gy=100rad吸収線量はすべての放射線に適用できるが,物質の単位質量に吸収されたエネルギーで定義されており,通常,その物質名を明記しなければならない。例えば,人体の組織の吸収線量を〈組織線量〉などという。一般に,線量といえば上記の吸収線量のことであるが,照射線量Xや線量当量Hを,単に放射線量ということもある。照射線量は,X線とγ線だけに用いられる。空気0.001293g(標準状態の空気1cm3の質量)中にX線,γ線によって生じた二次電子か正のイオンがつくる電離量が1静電単位のとき,照射線量は1R(レントゲン)であるとした。しかし,現在は,X=dQ/dmで定義されている。dQは質量dmの空気中でX線,γ線によって自由になったすべての二次電子か陽イオンが完全に空気中で止められたとき生ずる一方の符号の電荷の和の絶対値である。照射線量の単位は暫定的にRが用いられる。 1R=2.58×10−4C(クーロン)/kgであるが,新しいSI単位にはRはない。γ線と中性子の生物学的影響をみたとき,一般に吸収線量が同じでも中性子の方がγ線よりも影響が大きい。これは両者のエネルギーの与え方のちがい,すなわち線エネルギー付与(LET(エルイーテイー)。荷電放射線がある物質中を進むとき,単位長さ当りに与えたエネルギーkeV/μm)に関係する。LETに関係する線質係数Qで吸収線量Dを加重した放射線量当量Hが放射線防護の目的に用いられる。 H=DQNここで,Nは線量率(単位時間当りの吸収線量)などに関係した修正係数であるが,現在は1としている。線量当量の単位は,吸収線量と区別するためレムremが用いられてきた。新しいSI単位ではシーベルトが用いられる。原発事故などの大規模な原子力災害の際に,放射性物質の人体などへの影響を示す放射線量については,シーベルトが使われる。100rem=1Svである。線質係数Qには,X線,γ線,β線,電子線で1,エネルギー不明の中性子で10,陽子,重陽子線で10,α線や重荷電粒子では20が用いられる。一定期間(たとえば一年間)の放射線積算量を累積放射線量という。単位時間あたりの吸収線量,照射線量および線量当量を,それぞれ,吸収線量率,照射線量率および線量当量率といい,rad・min−1,R・min−1あるいはrem・h−1などで表す。なお,X線,γ線や中性子など非荷電放射線が,物質との相互作用で二次荷電粒子を発生したとき,その荷電粒子が得た最初の運動エネルギーの和をその物質の質量で除した商をカーマといい,radやGy単位で表す。 →関連項目福島第一原発|放射線|放射線障害 出典 株式会社平凡社百科事典マイペディアについて 情報 |
>>: Radiation monitor - Hoshasen monitor
A general term for women who, from the early Meiji...
This temple is located in Nariai-ji, Miyazu City,...
〘 noun 〙 In the Middle Ages, a person in charge of...
…(4) A famous musician is commissioned to compose...
This book on mining was originally written by Sato...
… [Middle Kofun Culture] In the middle of the Kof...
Born May 27, 1911 in Wallace, South Dakota [Died] ...
A cassette is a device that contains a magnetic t...
…Goods that are transported, whether internationa...
〘 noun 〙① A temple where nuns live. Nunnery. ② (&q...
...In general, there are few linguistic documents...
〘 noun 〙 A tack for attaching a piece of paper suc...
Dutch astronomer. Born in Barneveld, he studied a...
A general term for cargo handling work, including...
...Therefore, the discovery of galaxies in the ea...