When a number a is given, the number x that, when squared, gives a , in other words, the number x such that x 2 = a, is called the square root of a . When a is a positive number, there is one positive and one negative square root of a , and their absolute values are equal. The positive one is written as . is read as root a . The negative one is represented as -. Therefore, in this case, the square root of a can be summarized as ±. For example, the square root of 2 is and -, which can be summarized as ±. In this case, the symbol is called a radical sign (or square root sign). The square root of 0 is just 0. Also, the square root of a negative number is not a real number, but an imaginary number. For example, the square root of -2 is i and -i ( i is the imaginary unit). Let's consider the square root of a positive integer. When a is a square number, that is, a number that can be written as the square of a positive integer n , n 2 , then a is equal to n (for example, a = 2). However, when a is not a square number, a is never a rational number, but an irrational number. In other words, it can never be expressed as a finite decimal or fraction, but rather as a non-repeating infinite decimal (for example, a = 1.41421356...). If the length of one side of a square is 1, then the length of the diagonal can be expressed as, but the ancient Greeks already knew that a was an irrational number. This can be seen in Euclid's Elements. When we are considering the square root of a positive number, the radical symbol always represents a positive number. This is the convention for the radical symbol. So, when a > 0, it is = a , but when a < 0, a 2 > 0, so it is = - a . Sometimes the square root is contained within the square root sign. For example, [Tatsuro Miwa] ©Shogakukan "> How to find and remember square roots Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
数aが与えられたとき、二乗(平方)してaとなる数、つまり、x2=aとなる数xをaの平方根という。aが正の数のときは、aの平方根は正の数、負の数それぞれ一つずつあり、その絶対値は等しい。そして、正のほうを、と書く。は、ルートaと読む。負のほうは、-で表される。したがって、このとき、aの平方根は、±とまとめられることになる。たとえば、2の平方根は、と-で、±とまとめられる。この場合、記号を、根号(または平方根号)という。0の平方根は0だけである。また、負の数の平方根は、実数でなく、虚数である。たとえば-2の平方根は、iと-iである(iは虚数単位で、のこと)。 正の整数の平方根について考える。aが平方数、つまり、ある正の整数nの平方の形n2と書かれる数であるときは、はnに等しい(たとえば =2)。しかし、aが平方数でないとき、は有理数になることはけっしてなく、無理数になる。つまり、有限小数や分数で表されることはなく、循環しない無限小数になる(たとえば=1.41421356……)。正方形の一辺の長さを1とすれば、対角線の長さはと表されるが、が無理数であることを古代ギリシア人はすでに知っていた。それは、ユークリッドの『原論』にみられる。 正の数の平方根について考えているとき、根号はつねに正の数を表す。これが根号の規約である。すると、a>0のとき=aであるが、a<0のときa2>0であって、=-aとなる。 平方根号の中に平方根が含まれることがある。たとえば、 [三輪辰郎] ©Shogakukan"> 平方根の求め方と覚え方 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Mi-fa shan-shui (English: Mi-fa shan-shui)
The governor of each province of the Netherlands (...
It is a general term for policies related to food ...
A picture scroll from the late Heian to the early ...
A lower-ranking religious performer in the guise o...
…It corresponds to the name of the Holy God, YHVH...
Folk dance and song from northern Spain. The Arago...
…Antimony minerals include stibnite (Sb 2 S 3 ) ,...
The Sōtatsu-Kōrin school is also known as the Sōt...
A Shingon Buddhist temple in Kanazawa-cho, Kanazaw...
...There are gold, tin, and other deposits in the...
…An explosive made of ammonium nitrate, sodium ni...
...Many new types of organometallic compounds wer...
...Both theories have been subject to various emp...
...Camaille also refers to the process of paintin...
It is also read as "kensubon." It is an...