Powder metallurgy

Japanese: 粉末冶金 - ふんまつやきん(英語表記)powder metallurgy
Powder metallurgy

This is a processing technology that uses the fact that metal powder or powder of its compounds hardens when heated to high temperatures to create materials with unique properties or products of a certain shape. It is used to manufacture metals with high melting points such as tungsten that are difficult to produce by melting and casting, ultra-hard tool alloys such as tungsten carbide, composite alloys that are homogeneous mixtures of materials that do not dissolve in each other such as metals and oxides, porous materials such as metal filters used to filter oil and oil-retaining bearings that do not require lubrication, and is suitable for mass production of small parts with somewhat complex shapes such as gears for automobiles and other machines. It is also preferably used to mold materials that are difficult to roll or draw, and to manufacture magnets and magnetic cores because it can produce products with fine, uniform crystal grains.

Historically, before the Middle Ages, iron, gold, silver, and platinum were all made into ingots from powder. During the Industrial Revolution in the early 19th century, it was applied to making large platinum pots for the chemical industry and coins. Modern powder metallurgy is said to have begun in 1910, when Dr. Coolidge succeeded in making tungsten filaments for light bulbs. Diamonds were also widely used for the hard tools called dies used to stretch this sintered tungsten into thin wires. As an alternative, cheaper material, cemented carbide was created by bonding tungsten carbide with metallic cobalt, which achieved great success and powder metallurgy began to be applied to the manufacture of various industrial materials.

The manufacturing process varies depending on the type of raw powder and the intended use of the product, but generally, the order is (1) milling, (2) mixing, (3) compression molding, and (4) sintering. Currently, there are many different methods for milling, i.e., making powder, and the properties of the resulting powder vary greatly depending on the method, so the main focus of powder metallurgy technology is to adjust them appropriately in the subsequent processes. When using a mixture of two or more types of powder or powders with different particle shapes and sizes, mixing is performed to homogenize the raw powder and stabilize the operation in the subsequent compression molding and sintering processes to obtain a high-quality product. In the compression molding process, the powder is generally filled into a mold and pressure is applied with upper and lower punches to create a compact called a green compact or compact. The powder particles must be in close contact with each other and have sufficient strength. To create a long round bar or tubular compact, the powder is packed into a rubber bag or the like and compressed and molded by applying hydrostatic pressure in a high-pressure container filled with oil or the like. This molding method is called the rubber press method. There is also a method in which the powder is directly rolled with a rolling roll to form a long, thin, plate-like green compact, which is called the powder rolling method.

Although the powder particles are sufficiently tightly bonded to each other, the green compact is brittle and does not yet have atomic bonds. Sintering is the process of baking the green compact at high temperatures to make it strong enough to have the desired properties. The most important conditions for sintering are the sintering temperature, sintering time, and the gas atmosphere in the sintering furnace, and these conditions are finely adjusted according to the type of powder and the intended use of the final product. Methods for performing both compression molding and sintering include the hot press method, in which powder packed into a mold is compressed while being heated, and the hot isostatic press method, in which powder is compressed in a high-temperature, high-pressure gas container, and are applied to molding powders that are difficult to bake, such as compound powders and ceramic powders. Other methods include the powder extrusion method, in which powder packed into a mold with small holes at one end is extruded under pressure to make a rod-shaped compact, and the powder forging method, in which a lightly baked sponge-like object (preform) is forged at high temperatures to make a dense and strong compact. The product made in this way is called a sintered body. After the sintering process, depending on the application, the material may be compressed and sintered again to make it denser and stronger, or it may be subjected to dimensional correction or cutting to achieve the desired dimensions. In the case of sintered iron, it is heated in steam to create a thin film of iron oxide on the surface, which makes it more resistant to rust and wear.

[Ryuzo Watanabe]

[Reference item] | Metal powder
Powder metallurgy manufacturing process
©Shogakukan ">

Powder metallurgy manufacturing process


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

金属粉やその化合物の粉末を高温に加熱すると焼き固まることを利用して独特な性質をもつ材料をつくったり、一定の形の製品をつくる加工技術。溶かして鋳込んでつくるのが困難なタングステンなどの融点の高い金属、タングステンカーバイドのような超硬工具合金、金属と酸化物のように互いに溶け合わないものの均一な混合物である複合合金、油などを漉(こ)すのに用いる金属フィルターや給油の必要のない含油軸受などの多孔質材の製造に応用されるほか、自動車その他の機械の歯車のように小型で形のやや複雑な部品の大量生産に適している。また、圧延や線引きが困難な材料の成形加工や、結晶粒が細かくむらのないものが得られるので磁石や磁心などの製造にも好んで応用される。

 歴史的にみると、中世以前には鉄や金、銀、白金はすべて粉末の状態から塊がつくられた。19世紀初頭の産業革命時には、化学工業用の大きな白金鍋(なべ)や貨幣をつくるのに応用された。近代的な粉末冶金法は1910年にクーリッジが電球用のタングステンフィラメントをつくるのに成功したときに始まるとされている。また、この焼結タングステンを細い線に延ばすのに使うダイスという硬い工具にダイヤモンドが多用されていた。それにかわるより安価な材料として炭化タングステンを金属コバルトで結合した超硬合金がつくられ、それが大きな成功を収めるとともに、粉末冶金はさまざまな工業材料の製造に応用されるようになった。

 製造工程は、原料粉の種類やつくるものの使用目的により異なるが、一般的には〔1〕製粉、〔2〕混合、〔3〕圧縮成形、〔4〕焼結の順である。製粉すなわち粉の作り方は現在多種多様な方法が行われているが、方法の相違によってできる粉の性状も大いに異なり、それをその後の工程で適宜調整するのが粉末冶金技術の眼目である。混合は、2種以上の粉末や粒形および粒度の異なる粉末を混ぜて用いるときに、原料粉末を均質にして次の圧縮成形や焼結工程における操業を安定化し良質の製品を得るために行う。圧縮成形工程では一般に金型に粉末を充填(じゅうてん)して上下のポンチで圧力をかけ、圧粉体あるいはグリーンコンパクトとよばれる成形体をつくる。圧粉体は粉末粒子が互いに密着し十分な強さをもつことが必要である。長い丸棒や管状の圧粉体をつくるには、ゴム袋などに粉末を詰めて油などを満たした高圧容器中で静水圧をかけて圧縮成形する。この成形法はラバープレス法とよばれる。また、粉末を圧延ロールで直接的に圧延して長尺の薄い板状の圧粉体を成形する方法もあり、これは粉末圧延法とよばれる。

 圧粉体は粉末粒子間の密着は十分でもまだ原子的な結合はせず、もろい。そこで、これを高温で焼き固めて十分に強く、目的の性質をもつものにするのが焼結である。焼結の条件としては、焼結温度や焼結時間および焼結炉内のガス雰囲気がもっともたいせつであり、これらの条件は粉末の種類や最終製品の使用目的に応じて細かく調節される。圧縮成形と焼結とをともに行う方法として、型の中に詰めた粉末を加熱しながら圧縮するホットプレス法や、高温高圧のガス容器中で圧縮成形する熱間静水圧プレス法があり、化合物粉やセラミック粉のように焼き固めにくい粉末の成形に応用される。また、一端に小孔のあいた金型に詰めた粉末を圧力をかけて押し出し、棒状の成形体をつくる粉末押出し法や、軽く焼き固めたスポンジ状のもの(プレフォーム)を高温で鍛造し、緻密(ちみつ)で強い成形体をつくる粉末鍛造法などがある。このようにしてつくられたものは焼結体とよばれる。焼結工程のあと、用途に応じてふたたび圧縮と焼結とを繰り返してより緻密で強いものにしたり、目的の寸法に仕上げるため寸法矯正や切削加工を施す場合もある。鉄焼結体の場合には、水蒸気中で加熱して表面に酸化鉄の薄い皮膜をつくり、錆(さ)びにくくかつ摩耗しにくくする。

[渡辺龍三]

[参照項目] | 金属粉
粉末冶金の製造工程
©Shogakukan">

粉末冶金の製造工程


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Spray drying - Funmukanso (English spelling) Spray drying

>>:  Powder forging

Recommend

Huntington, HE

…A private library in San Marino, a suburb of Los...

Forgery - Gisaku

〘noun〙① To make a fake. Especially when someone el...

Library of Congress Classification

...Of the approximately 130,000 classification it...

Kumebe - Kumebe

In ancient times, they were a military tribe that ...

Carlton Wolsey Washburne

1889‐1968 American progressive educator who founde...

Cooperative Party

There are three political parties in Japan: (1) A...

Special procurement

...Abbreviation for special procurement. Usually ...

《Dictionary of the Devil》

...His cynicism is displayed in The Cynic's G...

Kawachi Dynasty

...The 15th emperor. Son of Emperor Chuai, his mo...

Equatorial Undercurrent

An ocean current that flows eastward along the equ...

Utopia - Utopia (English spelling)

A political fantasy published by Thomas More in 1...

Nippon Cement Co., Ltd. - Nihon Cement

Known as a major cement manufacturer affiliated wi...

Osaka University

A national university corporation. Osaka Imperial...

Micropotamogale lamottei (English spelling) Micropotamogalelamottei

…They give birth to two young per litter. There i...

Plaster bandage

This is a typical hardening bandage that is widel...