In nature, irregular and complex shapes exist everywhere, such as the coastline of a ria coast, the shape of clouds in the sky, the shape of the main and tributaries of a river, the distribution of blood vessels in an animal's body, or the shape of tree branches. Unlike the neat shapes such as circles, triangles, spheres, and rectangular parallelepipeds that are dealt with in elementary geometry, classical differential calculus in mathematics has been developed under the premise that it is possible to differentiate any shape (curve) no matter how complex it may appear; that is, even if a shape is curved as a whole, if it is broken down into small enough parts, the small parts will eventually become indistinguishable from straight lines, in other words, small parts that are sufficiently divided can be approximately represented by straight lines. However, when the shapes seen in nature as mentioned above are broken down and a part is taken out and enlarged, they still have the same complex shape as the original whole. Now, let us consider mathematically a figure in which no matter how it is decomposed, each part has the same shape as the original whole. This property of always having a reduced version of the original shape is called self-similarity. A figure with self-similarity cannot be differentiated because its infinitesimal parts cannot be approximated by line segments. A fractal is a shape (set) that has such self-similarity and whose differentiation cannot be defined anywhere, and the mathematics that deals with it is called fractal geometry. The word was coined by the Frenchman BB Mandelbrot (1924- ) and its origin is from the Latin word fractas, meaning "fragment" or "division." Fractals are quantitatively expressed by fractal dimension (similarity dimension). This dimension is different from the usual one-dimensional (line), two-dimensional (plane), and three-dimensional (solid) dimensions expressed by integers, and includes non-integer values, and generally speaking, figures with higher dimensions are more complex and irregular. Fractal figures can now be easily drawn by computer, and are considered to have developed in the field of computer graphics. In fact, since fractals are not differentiable, computer analysis and simulation are indispensable, and they can be said to be a geometry that developed together with computers. In addition to the various shapes in nature mentioned above, the subject of fractals is extremely wide-ranging, including the distribution of celestial bodies, the frequency of earthquakes, random walks, and fluid and polymer structures, and research and results in this field are attracting attention. [Yutaka Kurihara] "Fractal" by Hideki Takayasu (1986, Asakura Publishing) Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
自然界には、たとえばリアス式海岸の海岸線や、空に浮かぶ雲の形、河川の本支流の形、動物の体内に広がっている血管の分布の形、あるいは樹木の枝の形など、数学の初等幾何で扱う円や三角形、球、直方体などの整った形とは異なって不規則で複雑な図形が至る所に存在する。数学の古典的な微分法は、どんなに複雑なようにみえる形(曲線)であっても微分が可能である、つまり、全体としては曲がっていても、それを十分に細かく分解していけば、細分された部分はやがて直線と見分けがつかないほどになってしまう、いいかえれば十分に細分された微小部分は直線で近似的に表すことができる、という前提のもとに発展してきた。ところが前記のような自然界にみられる形はその図形を分解していって、その一部を取り出して拡大してみると、元の全体の図形と同じような複雑な図形を依然としてもっている。 いま、どのように分解してもその部分が元の全体と同じ形を備えている図形を数学的に考える。このつねに元の形の縮小した形を備えているという性質を自己相似性という。自己相似性を備えた図形は、その微小部分が線分に近似できないから微分が不可能である。フラクタルとはそのような自己相似性を備え、どこでも微分が定義できないような形(集合)をいい、それを扱う数学をフラクタル幾何学という。 このことばはフランスのマンデルブロB. B. Mandelbrot(1924― )がつくったもので、語源はラテン語のfractasであり、「破片」「分割」を意味する。 フラクタルは定量的にはフラクタル次元(相似性次元)で表される。この次元は普通にいう一次元(線)、二次元(平面)、三次元(立体)といった整数で表される次元と異なり、非整数の値も含む次元であり、一般的には次元の高い図形のほうがより複雑で不規則な図形といえる。フラクタル図形は、現在、コンピュータで容易に描くことができ、コンピュータ・グラフィクスの分野で発展した観がある。事実、フラクタルは微分不可能であるため、コンピュータによる解析やシミュレーションが不可欠であり、コンピュータとともに発展した幾何学といえる。その対象には前記のような自然界のさまざまな形のほか、天体の分布、地震の発生頻度、ランダムウォーク、流体や高分子構造などきわめて広範囲であり、その研究と成果が注目される。 [栗原 裕] 『高安秀樹著『フラクタル』(1986・朝倉書店)』 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
Quadratic equation between Cartesian coordinates ...
…It was originally a concept used in physics, and...
1865‐1949 German geographer and explorer. Born in ...
It is a custom to decorate Hina dolls, offer peac...
...Digital measurement features include: (1) easy...
〘Noun〙 A kanki (postscript) enclosed in a box at t...
Among the German historical schools, this school w...
…This is a concept that exists within ordinary ma...
Drugs are primarily taken for the purpose of treat...
A legal theory that seeks the essence of criminal ...
… [Hiroshi Wakamatsu]. … *Some of the terminology...
Born January 29, 1895 in Boston [Died] February 17...
His real name was Gaius Julius Caesar Germanicus....
In a civil or administrative lawsuit, the party ag...
…[Mitsuo Chihara]. . . *Some of the terminology t...