Sample distribution - Hyohonbunpu

Japanese: 標本分布 - ひょうほんぶんぷ
Sample distribution - Hyohonbunpu

When making statistical inference, we often take an arbitrary sample of size n from a population, consider a function of the sample, such as the arithmetic mean of the sample, and consider what probability distribution it has. In other words, we assume that n random variables X 1 , X 2 , …, X n are independent and each X i has the same probability distribution, and the problem is to determine the probability distribution of the random variable Y=F(X 1 , …, X n ), where F(x 1 , …, x n ) is a function of the given n variables. The distribution of Y is called the sample distribution.

In what follows, we assume that X 1 , …, X n are independent and that the distribution of each X i is normal.

(1) If all X i have the same normal distribution N(m,σ 2 ), then

The distribution of is normal distribution N(m,σ 2 /n).

(2) If all X i have the same normal distribution N(0,1), then Y = X 1 2 + X 2 2 + ... + X n 2
If the probability density of is k n (x),

Here, Γ(x) represents the gamma function. The probability distribution with this k n (x) as the probability density is called the χ 2 (chi-squared) distribution with n degrees of freedom.

(3) If all X i have the same normal distribution N(m,σ 2 ), then

are independent, and the distribution of (n/σ 2 )S 2 is a χ 2 distribution with (n-1) degrees of freedom.

(4) If X and Y are independent, X has a normal distribution N(0,1) and Y has a χ2 distribution with n degrees of freedom, then

The probability density of

This distribution of Z n is called the t-distribution with n degrees of freedom.

(5) If X m and Y n are independent and have χ 2 distributions with m and n degrees of freedom, respectively,

The probability density f mn (x) is

This probability distribution of Z is called the F distribution with degrees of freedom m and n.

[Shigeru Furuya]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

統計的推測を行う場合、母集団から大きさnの任意標本をとり、たとえばその標本の相加平均など、標本のある関数を考え、これがどのような確率分布をもつかが問題となることが多い。すなわち、n個の確率変数X1、X2、……、Xnが独立で、各Xiは同一の確率分布をもつとし、F(x1,……,xn)を与えられたn変数の関数として、確率変数Y=F(X1,……,Xn)の確率分布を決定することが問題となる。Yの分布のことを標本分布という。

 以下では、X1、……、Xnは独立で、各Xiの分布は正規分布であると仮定する。

(1)Xiがすべて同一の正規分布N(m,σ2)をもてば

の分布は正規分布N(m,σ2/n)である。

(2)Xiがすべて同一の正規分布N(0,1)をもてば
  Y=X12+X22+……+Xn2
の確率密度をkn(x)とすると

である。ただしΓ(x)はガンマ関数を表す。このkn(x)を確率密度とする確率分布を自由度nのχ2(カイ二乗)分布という。

(3)Xiがすべて同一の正規分布N(m,σ2)をもてば

の両者は独立で、(n/σ2)S2の分布は自由度(n-1)のχ2分布である。

(4)X、Ynが独立で、Xが正規分布N(0,1)、Yが自由度nのχ2分布をもつならば

の確率密度は

である。このZnの分布を自由度nのt分布という。

(5)Xm、Ynが独立で、それぞれ自由度m、nのχ2分布をもつならば

の確率密度fmn(x)は

である。このZの確率分布を自由度m、nのF分布という。

[古屋 茂]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Surface roughness - hyomenarasa (English spelling) surface roughness

>>:  Sample survey - Hyohonchosa (English spelling)

Recommend

Helogale parvula (English spelling) Helogaleparvula

… They live in a variety of environments, from lo...

Deaconess - Onnajosai

…The Anglican Church maintains the three holy ord...

Coastal levee

There are two types of levees: those that prevent...

gleba

…The young mushroom is a reptile egg-like globule...

Shark attack

...A general term for sharks that harm and someti...

Kagoshima Airport - Kagoshima Airport

An airport in Kirishima City, Kagoshima Prefecture...

Oligomer enzyme

...Furthermore, depending on how these secondary ...

Ganita - Ganita

...The main focus is on the construction of trian...

Ottotsu - Ottotsu

...Their predators are killer whales and sharks, ...

Kinzen - Kinzen

…The four lay priests were followers of Zhang She...

Uchibashitana - Uchibashitana

…The articles in the “Records of Famous Paintings...

Islamic fundamentalism

Political movements that bear the name of Islam ar...

Madeleine de Souvré, marquise de Sablé

1599‐1678 A French woman of letters. From a young ...

Woody, CD - Woody

…It was found that during this conditioned escape...