Pascal's Theorem

Japanese: パスカルの定理 - ぱすかるのていり
Pascal's Theorem

A necessary and sufficient condition for six points on a plane to be on the same quadratic curve is that the intersections of the three pairs of opposite sides of a hexagon with these points as vertices are on a straight line. This theorem is called Pascal's theorem. Here, the hexagon does not have to be a polygon in the usual sense. Figure A illustrates Pascal's theorem for an ellipse, but it can also be a hexagon ABCDEF as shown in Figure B. In this case, of the six sides, AB and DE, BC and EF, and CD and FA are opposite sides. Figure C shows the case where the quadratic curve degenerates into two straight lines, and is also called Pappus's theorem.

Using Pascal's Theorem, when five points A, B, C, D, and E are given, it is possible to construct a quadratic curve passing through them. In fact, in Figure B , consider the line AF to be an arbitrary line passing through A, and from the five given points, follow the diagram to find L, then N, then the line LN, then M, and then F as the intersection of the two lines AF and EM; the locus of F is the desired quadratic curve. As can be seen from the fact that quadratic curves can be constructed using this theorem, Pascal's Theorem is a theorem of projective geometry that is so important that it can be said to be equivalent to the definition of a quadratic curve.

[Tachibana Shunichi]

[Reference] | Quadratic curve
Pascal's Theorem explanation diagram (Figure A)
©Shogakukan ">

Pascal's Theorem explanation diagram (Figure A)

Pascal's Theorem explanation diagram (Figure B)
©Shogakukan ">

Pascal's Theorem explanation diagram (Figure B)

Pascal's Theorem explanation diagram (Figure C)
©Shogakukan ">

Pascal's Theorem explanation diagram (Figure C)


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

平面上の6点が同一の二次曲線上にあるための必要十分条件は、これらの点を頂点とする六角形の三組の対辺の交点が一直線上にあることである。この定理をパスカルの定理という。ここで、六角形は普通の意味の多角形である必要はない。図Aは楕円(だえん)についてパスカルの定理を描いてあるが、図Bのような六角形ABCDEFでもよい。この場合、六つの辺のうちABとDE、BCとEF、CDとFAがそれぞれ対辺である。図Cは二次曲線が退化して二直線になった場合で、パップスの定理ともよばれている。

 パスカルの定理を用いると、5点A、B、C、D、Eが与えられたとき、それらを通る二次曲線を作図することができる。実際、図Bで直線AFをAを通る任意の直線と考え、与えられた5点から図に従ってL、次にN、次に直線LN、次にM、次に二直線AF、EMの交点としてFを求めれば、Fの軌跡が求める二次曲線である。この定理を用いて二次曲線が作図できることからわかるように、パスカルの定理は二次曲線の定義と同等といってよいほど重要な射影幾何学の定理である。

[立花俊一]

[参照項目] | 二次曲線
パスカルの定理説明図〔図A〕
©Shogakukan">

パスカルの定理説明図〔図A〕

パスカルの定理説明図〔図B〕
©Shogakukan">

パスカルの定理説明図〔図B〕

パスカルの定理説明図〔図C〕
©Shogakukan">

パスカルの定理説明図〔図C〕


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Huskisson

>>:  Pascal's triangle - Pascal's triangle

Recommend

Novi Sad (English spelling)

The capital of the Autonomous Province of Vojvodin...

Nuclear steelmaking - genshiryokusei-tetu

A steelmaking method in which iron ore is directl...

Fushinosho

A manor in Yoshiki District, Suo Province (present...

Utsunomiya Daimyojin Shrine

...The water turned red from the blood that flowe...

Alcoholism

Most cases are caused by ethyl alcohol (ethanol) p...

Common French - Common French

…Originally, it contained many dialects, but one ...

Kineya Kisaburo - Kineya Kisaburo

...It is said to be the head family of Nagauta. I...

Collection of seals - Inshuyu

...A book in the form of a book made by stamping ...

Aizen Myoo

A statue belonging to the Wrathful or Myo-o sects...

Maximilian, Prince of Baden

Born: July 10, 1867 in Baden-Baden Died November 6...

Buried Cultural Property - Maizo Bunkazai

Buried cultural property means cultural property ...

Transition elements - Sen'igenso

According to the IUPAC definition, an element wit...

IHI - IHI Corporation

A heavy industry company focusing on shipbuilding ...

Kinugasagai (English spelling) divested carrier shell

A gastropod of the family Caragana, class of the ...

Upit, A. (English spelling) UpitA

…After the October Revolution in 1918, the three ...