Because liquids and gases do not have an inherent shape and can deform freely, the way they move is very different from that of solids. For this reason, the movement of liquids and gases is referred to as "flow" in everyday life. Liquids and gases are collectively called fluids. What interests us as humans about flows is (1) how a fluid moves, (2) what forces an object placed in a flow experiences from the flow, and (3) how objects move within a flow. For example, how the water in a river flows and the distribution of wind speed around a building are all examples of (1). The force of wind acting on a sailing ship, the lift force acting on the wings of an airplane, and the destructive force of a storm on a building are all examples of (2). The movements of leaves fluttering down through the air, fish swimming in the water, and birds flying in the sky are all examples of (3). Questions (1), (2), and (3) are not independent; to know (2), you need (1), and to answer (3), you need knowledge of (1) and (2). Because fluids deform as they move, their movement, or flow, is extremely complex. However, by studying simple flows, we can understand and predict to some extent the behavior of complex flows. [Imai Isao] Flow in a tubeThe simplest type of flow is that through a pipe ( ). If the cross-sectional area of the pipe is S , the flow velocity is v , and the fluid density is ρ, then the mass of fluid flowing per unit time through the cross section is ρvS . This value is the same for all cross sections of the pipe. In other words, the relationship ρvS = constant holds for each cross section of the pipe. This is called the condition of continuity. For liquids, the density is constant, so this condition becomes vS = constant. In other words, the flow velocity v changes inversely proportional to the cross-sectional area S. This is a fact that is easy to understand using common sense. When the flow velocity in the pipe changes, the pressure p of the fluid also changes accordingly. The relationship is as follows for a non-shrinking fluid: [Imai Isao] Flow around an objectWhen an object moves through a stationary fluid, the fluid also moves. In other words, a flow is created. The simplest case is when an object moves at a uniform speed. Looking at it from another perspective, this is equivalent to a uniform flow hitting a stationary object. Therefore, in order to study the forces that air or water exert on airplanes or ships, a method is used in which a uniform flow of air or water is created in a wind tunnel or water tank, a model is placed in the tank, and the flow around the model is examined. When examining the case of a uniform flow hitting a circular cylinder, a typical example of a simple object, the following facts become apparent ( ). (a) When the flow speed is slow, the flow is symmetrical in both the front-to-back and left-to-right directions. (b) When the flow speed is increased slightly, the front-to-back symmetry is broken, and the distance between the streamlines on the downstream side becomes slightly wider than on the upstream side. (c) When the flow speed is increased further, the streamlines along the surface of the cylinder separate along the way, and the eye of a vortex appears behind the cylinder. (d) As the flow speed increases, the eye of the vortex becomes longer and begins to oscillate from side to side. (e) When a certain flow speed is reached, one of the vortices leaves the back of the cylinder and is blown away. At the same time, the vortex on the other side begins to grow and is eventually blown away as well. This phenomenon occurs one after another, forming a beautiful line of vortices behind the cylinder. These are called Kármán vortices. (f) If the flow speed is further increased, vortex shedding becomes more frequent, the vortices mix, and the flow behind the cylinder changes in a very complex and irregular way in both time and space. This state does not change even if the flow speed is further increased. In this way, even for an object with a simple shape such as a cylinder, the flow around it changes in a complex way depending on the flow speed. However, this complex change can be grasped in a unified way by introducing a dimensionless number called the Reynolds number. If the density of the fluid is ρ, the viscosity of the fluid is μ, the speed of the uniform flow is U , and the diameter of the cylinder is L , then R = ρ UL /μ is dimensionless and is called the Reynolds number. In experiments with a constant cylinder ( L is constant) and a constant fluid (ρ and μ are constant), R is proportional to U , so R is a dimensionless speed, so to speak. The values of R in ( )(b)(c)(d)(e)(f) in Figure B indicate the approximate value of R for each phenomenon. The phenomenon shown in the figure is not related to the size of the cylinder, and is a common phenomenon that can be seen regardless of the type of fluid used, such as water, oil, or air.The cross-sectional shape of an airplane wing or fuselage is called streamlined. When a uniform flow hits such an object, as shown in , the general state of the flow hardly changes with the flow velocity. However, when the flow velocity distribution is examined, it is found to be very different depending on the value of R. For example, the distribution of flow velocity on the line AA' changes almost linearly when R < 1, whereas when R > 1000, it suddenly drops to 0 near the surface of the object. shows an enlarged view of this state. The state of the flow is similar to the flow when a fluid is sandwiched between two flat plates as shown in Figure (1) and one plate is moved parallel to the other plate. The flow is also similar to the movement of a rod sandwiched between two plates as shown in (2) when one plate is moved. In other words, the parallel shear motion of the fluid in (1) is actually a translational motion while each part of the fluid rotates like a roller. The part of the fluid that rotates is the vortex. The thin layer where the flow velocity changes suddenly over the surface of the object in (b) is called the boundary layer, which is nothing other than a layer of vortices.Generally, when a flow hits an object, if R is large, the flow field is divided into three parts: (1) a region that shows smooth streamline patterns spreading out from the upstream side of the object to the side, (2) a boundary layer that covers the surface of the object, and (3) a region behind the object that shows complex vortex motion. (1) is called the mainstream, and (3) the wake. In particular, an object whose boundary layer does not separate midway and whose wake is therefore extremely narrow is called a streamlined object. An object that is not streamlined is called a blunt object. The separated boundary layer acts as a vortex sheet, rolling up to form isolated vortices, or splitting up to form a group of vortices of various sizes. This is the cause of the Karman vortex in (e) and the complex vortex region in (f). A complex irregular flow is called a turbulent flow, while a flow with smooth streamlines is called a laminar flow.[Imai Isao] Physical quantities that characterize the flowEven if a flow appears complicated at first glance, by observing each part, it can be considered based on the knowledge of the flow in a pipe and the flow around an object mentioned above. For example, in the part where smooth streamlines are observed, it can be considered as a flow in a pipe with streamlines as walls, i.e., a flow tube. Therefore, in the narrow part of the flow tube, i.e., in the place where the interval between the streamlines is narrow, the flow speed is high, and therefore, according to Bernoulli's theorem, the pressure is low. In addition, the state of the flow is expected to vary depending on the density and viscosity of the fluid, such as air, water, oil, and mercury, as well as the flow speed and the size of the object, but it is important to note that it is actually determined only by the Reynolds number R = ρ UL /μ ( L is the representative length of the object). Since the viscosity of water and air is small, R is extremely large in the flows we experience in daily life. Therefore, an area with irregular vortex motion like the wake in (f) always appears. In other words, turbulent flow phenomena are particularly important in flows with a large Reynolds number R. However, for flows with small R , as shown in (a) and (b) of , no boundary layer appears and the streamlines are smooth everywhere, so turbulence does not occur. This corresponds to the case where the effect of viscosity is large. For example, air or water would seem to be an extremely viscous liquid to a microorganism moving through air or water.At normal speeds, there is no difference between the flow of gas and liquid. However, with gas, when the flow speed changes depending on the location, the pressure also changes according to Bernoulli's theorem, and so the density also changes. Therefore, gas behaves differently from liquids, whose density does not change. Such differences appear when the flow speed v is equal to or greater than half the speed of sound waves traveling through gas. Such gas flows, in which the compressibility of the gas cannot be ignored, are called high-speed gas flows. At low speeds, there is no difference in the way gas and liquid flow. [Imai Isao] "The Science of Flow, by A.H. Shapiro, translated by Imai Isao (1977, Kawade Shobo Shinsha)" ▽ "Revised Edition of The Science of Flow, by Kimura Ryuji (1985, Tokai University Press)" ▽ "The Science of Flow, by Arita Masamitsu (1998, Tokyo Denki University Press)" ▽ "The Mechanics of Flow, by Furukawa Akinori, Setoguchi Toshiaki, and Hayashi Hidechika (1999, Asakura Shoten)" ▽ "The Science of Flow Viewed on a PC: An Introduction to Computational Fluid Dynamics, edited by Yakawa Motoki (2001, Kodansha)" ▽ "The Mechanics of Flow: From Hydraulics to Fluid Mechanics, by Sawamoto Masaki (2005, Kyoritsu Shuppan)" [References] | | | | | | | | |©Shogakukan "> Flow through a pipe (Figure A) ©Shogakukan "> Flow around a cylinder (change with flow velocity) [Figure... ©Shogakukan "> Flow on the surface of a streamlined object (1) (Figure C) ©Shogakukan "> Flow on the surface of a streamlined object (2) (Fig. D) Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
液体と気体は固有の形をもたず自由に変形するので、その運動の仕方も固体とは非常に異なっている。そのため、日常的にも液体や気体の運動は「流れ」とよばれる。そして、液体と気体を一括して流体という。 流れについてわれわれ人間に興味があるのは、(1)流体はどのような運動をするか、(2)流れの中に置かれた物体は流れからどんな力を受けるか、(3)流れの中で物体はどんな運動をするか、などである。たとえば、川の水はどう流れるか、建物の周りの風速分布はどうか、などは(1)の例である。帆船に働く風の力、飛行機の翼に働く揚力、暴風によって建物の受ける破壊力などは(2)の例である。空中をひらひら落ちる木の葉、水中を泳ぐ魚、空を飛ぶ鳥、などの運動は(3)の例である。(1)(2)(3)の問題は独立なものではなく、(2)を知るには(1)が、また(3)に答えるには(1)と(2)の知識が必要である。 流体は変形しながら運動するので、その運動、つまり流れはきわめて複雑である。しかし、簡単な流れを調べておくと、複雑な流れについてもそのようすをある程度理解し予測することができる。 [今井 功] 管の中の流れ流れのなかでもっとも簡単なものは管を通る流れである( 管の中で流速が変化すると、それに応じて流体の圧力pも変化する。その関係は、縮まない流体の場合 [今井 功] 物体の周りの流れ静止流体中を物体が運動すると、それによって流体も運動する。すなわち流れが生ずる。もっとも簡単なのは物体が等速運動をする場合である。見方を変えると、これは静止物体に一様な流れが当たる場合に相当する。それゆえ、飛行機や船が空気や水から受ける力を研究するために、風洞や水槽で空気や水の一様な流れをつくり、その中に模型を置いて、模型の周りの流れを調べるという方法が使われる。 簡単な物体の代表的なものとして、円柱に一様流が当たる場合を調べると、次の事実がわかる( )。(a)流速の遅い場合、流れのようすは前後・左右ともに対称である。(b)流速をすこし増すと、前後対称性は破れ、下流側では上流側より流線間隔がやや広がってくる。(c)さらに流速を増すと、円柱表面に沿う流線は途中ではがれて円柱の背後に渦の目玉が現れる。(d)流速を増すにつれて、渦の目玉は長く伸び、左右に振動を始める。(e)ある流速に達すると、渦の一つは円柱背後から離れて吹き流される。それとともに相手側の渦は成長を始めて、ついに吹き流される。この現象が次々とおこるために、円柱の背後に美しい渦の列ができる。これがすなわちカルマン渦(うず)である。(f)さらに流速を増すと渦の放出は頻繁になり、渦は混ざりあって円柱背後の流れは時間的にも空間的にもきわめて複雑・不規則に変化する。さらに流速を増してもこの状態は変わらない。このように、円柱という簡単な形の物体についても、その周りの流れは流速によって複雑に変化する。しかし、この複雑な変化も、レイノルズ数という無次元の数を導入することによって統一的につかむことができる。流体の密度をρ、流体の粘性率をμ、一様流の速度をU、円柱の直径をLとすると、R=ρUL/μは無次元で、レイノルズ数とよばれる。一定の円柱(Lは一定)、一定の流体(ρとμは一定)についての実験ではRはUに比例するので、Rはいわば無次元の速度である。 の(a)(b)(c)(d)(e)(f)につけたRの値は、それぞれの現象についてのRの概略値を示す。図の現象は円柱の大小に関係せず、また水、油、空気など使用する流体の種類によらず共通してみられる現象なのである。飛行機の翼の断面形や胴体の形は流線形とよばれている。このような物体に一様な流れが当たる場合を調べると、 のように、流れの全般的なようすは流速によってほとんど変化しない。しかし、流速分布を調べると、Rの値によって非常に異なることがわかる。たとえば、直線AA'上の流速の分布は、R<1ではほとんど直線的に変化するのに対して、R>1000では物体の表面近くで急に0まで下がる。そのようすを拡大して示したのが である。その流れのようすは、 (1)に示すような2枚の平板の間に流体を挟み、一方の板を他方の板に平行に動かすときの流れに似ている。その流れはまた、 (2)のように2枚の板の間に丸棒を挟んで一方の板を動かすときの棒の運動とも似ている。つまり、 (1)の流体の平行なずれ運動は、実は流体の各部分がころのように自転運動をしながら並進運動をしているのである。自転運動をしている流体部分がすなわち渦である。 (b)の物体表面を覆う流速の急変する薄い層は境界層とよばれるが、これはつまり渦の層にほかならない。一般に、物体に流れが当たるとき、Rの大きい場合、流れの場は、(1)物体の上流側から側方に広がる滑らかな流線模様を示す領域、(2)物体表面を覆う境界層、(3)物体背後の複雑な渦運動をする領域、の三つに分かれる。(1)は主流、(3)は伴流とよばれる。とくに、境界層が途中ではがれず、したがって伴流がきわめて狭いような物体が流線形である。流線形でない物体は鈍い物体とよばれる。 はがれた境界層は渦の層として行動し、巻き上がって孤立した渦巻をつくり、あるいは分裂して大小さまざまの渦の群をつくる。これが、 (e)のカルマン渦や (f)の複雑な渦領域の発生する原因である。複雑な不規則な流れを乱流、これに対して滑らかな流線をもつ流れを層流という。[今井 功] 流れを特徴づける物理量一見複雑にみえる流れも、その各部分を観察すると、前述の管の中の流れと物体の周りの流れの知識をもとにして考察することができる。たとえば、滑らかな流線がみられる部分では、流線を壁とする管、すなわち流管の中の流れと考えられるから、流管の細い部分、つまり流線間隔の狭い場所では流速が大きく、したがってベルヌーイの定理により圧力が低いことがわかる。また流れのようすは、空気、水、油、水銀のように、流体の密度や粘性によって異なるのはもちろん、流速や物体の大きさによっても千変万化するように予想されるが、実はレイノルズ数R=ρUL/μ(Lは物体の代表的な長さ)だけで決まることは重要である。水や空気の粘性は小さいので、日常経験する流れではRはきわめて大きい。したがって、 (f)の伴流のような不規則な渦運動をする領域がかならず現れるのである。すなわち、乱流現象は大きいレイノルズ数Rの流れではとくに重要な意味をもつのである。しかし、Rの小さい流れでは、 の(a)、(b)で示されるように、境界層は現れず、流線は至る所滑らかであるから乱流はおこらない。これは粘性の影響が大きい場合に相当する。たとえば、空気中や水中を運動する微生物にとっては、空気や水は極度に粘い液体のように感じられるだろう。普通の速度では気体と液体の流れについて違いはない。しかし気体では、流速が場所によって変化すると、ベルヌーイの定理によって圧力も変化するので密度も変化する。それゆえ、密度変化をしない液体とは異なった運動をする。そのような相違が現れるのは、流速vが気体中を伝わる音波の速度の半分程度以上になる場合である。そのような気体の圧縮性が無視できない流れを高速気流という。低速の流れでは気体でも液体でも流れ方に相違はないのである。 [今井 功] 『A・H・シャピロ著、今井功訳『流れの科学』(1977・河出書房新社)』▽『木村竜治著『改訂版 流れの科学』(1985・東海大学出版会)』▽『有田正光著『流れの科学』(1998・東京電機大学出版局)』▽『古川明徳・瀬戸口俊明・林秀千人著『流れの力学』(1999・朝倉書店)』▽『矢川元基編『パソコンで見る流れの科学――数値流体力学入門』(2001・講談社)』▽『澤本正樹著『流れの力学――水理学から流体力学へ』(2005・共立出版)』 [参照項目] | | | | | | | | |©Shogakukan"> 管を通る流れ〔図A〕 ©Shogakukan"> 円柱の周りの流れ(流速による変化)〔図… ©Shogakukan"> 流線形物体の表面の流れ(1)〔図C〕 ©Shogakukan"> 流線形物体の表面の流れ(2)〔図D〕 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
>>: Nagarjunakonda - Nagarjunakonda (English spelling)
The seventh day after death, and a memorial servi...
A play by the English playwright J. Gay. First per...
…Machines used in rock-cutting include drilling m...
…From the fourth edition (1527) onwards, a world ...
…After World War II, the effectiveness of tanks a...
The Ashikaga clan, which had its base in Koga, Sh...
1880‐1966 German researcher of Mongolian and Sinol...
...This mural is an example of Macedonian Byzanti...
… In America, imprisonment had been advocated as ...
Multiple warheads. Intercontinental Ballistic Miss...
…A transportation and finance company that played...
...The Pinakothek in the Vatican Museums and the ...
...Due to these characteristics, they are often k...
...The seeds have awns that are modified pappus. ...
An evergreen shrub of the Ericaceae family, also k...