A function introduced by P.A. Dirac to formulate quantum mechanics. Even though δ( x )=0 when x ≠0, the integral in any domain including the point x =0 is A function δ( x ) is a function that satisfies the following: For any function f ( x ) that is continuous at x = 0, may be defined as a function that satisfies. However, the integration domain can be any as long as it includes x = 0. δ( x ) has a strong singularity at x = 0, so it cannot be considered an ordinary function, but mathematically it has a rigorous basis as a generalized function. δ( x ) can also be expressed as the limit of the function sin gx /π x as g → ∞. By the definition of δ( x ), δ( -x ) = δ( x ), so δ( x ) is an even function, and δ'(- x ) = -δ'( x ), so δ'( x ) is an odd function. Source: Encyclopaedia Britannica Concise Encyclopedia About Encyclopaedia Britannica Concise Encyclopedia Information |
量子力学を定式化するために,P.A.M.ディラックが導入した関数。 x≠0 のとき δ(x)=0 であるにもかかわらず,x=0 の点を含む任意の領域での積分が を満足するような関数 δ(x) のことをいう。あるいは,x=0 で連続な任意の関数 f(x) に対して, を満足する関数と定義してもよい。ただし,積分領域は x=0 を含んでいれば任意でよい。 δ(x) は x=0 で強い特異性をもつから,通常の関数とはいえないが,数学的には超関数として厳密な基礎づけがなされている。 δ(x) は, sin gx/πx という関数の g→∞ の極限として表わすこともできる。 δ(x) の定義によって,δ(-x)=δ(x) となるから δ(x) は偶関数,また δ'(-x)=-δ'(x) となるから δ'(x) は奇関数である。 出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報 |
<<: Delta Plan - Delta Plan (English spelling)
→ Calorie theory Source : Heibonsha Encyclopedia A...
When fine powder is heated to high temperatures, ...
This law stipulates necessary regulations for the...
Italian sculptor and architect. He was active not ...
… [Europe] European coffee shops, which became po...
...It consists of three layers: the support, the ...
→ Salmon Source: Shogakukan Encyclopedia Nipponic...
A former town in Akumi County, in the eastern part...
…Yi Seong-gye excelled in military ability and ma...
…(11) Koshu Houses: Around Shioyama in Yamanashi ...
...In the latter two genera, the lower tusks are ...
…[Maki Sachiko]. . . *Some of the terminology tha...
A method of calculating geometric shapes using tr...
The part of the ear that is located between the o...
Born: circa 345. Concordia, near Aquileia [Died] 4...