A function introduced by P.A. Dirac to formulate quantum mechanics. Even though δ( x )=0 when x ≠0, the integral in any domain including the point x =0 is A function δ( x ) is a function that satisfies the following: For any function f ( x ) that is continuous at x = 0, may be defined as a function that satisfies. However, the integration domain can be any as long as it includes x = 0. δ( x ) has a strong singularity at x = 0, so it cannot be considered an ordinary function, but mathematically it has a rigorous basis as a generalized function. δ( x ) can also be expressed as the limit of the function sin gx /π x as g → ∞. By the definition of δ( x ), δ( -x ) = δ( x ), so δ( x ) is an even function, and δ'(- x ) = -δ'( x ), so δ'( x ) is an odd function. Source: Encyclopaedia Britannica Concise Encyclopedia About Encyclopaedia Britannica Concise Encyclopedia Information |
量子力学を定式化するために,P.A.M.ディラックが導入した関数。 x≠0 のとき δ(x)=0 であるにもかかわらず,x=0 の点を含む任意の領域での積分が を満足するような関数 δ(x) のことをいう。あるいは,x=0 で連続な任意の関数 f(x) に対して, を満足する関数と定義してもよい。ただし,積分領域は x=0 を含んでいれば任意でよい。 δ(x) は x=0 で強い特異性をもつから,通常の関数とはいえないが,数学的には超関数として厳密な基礎づけがなされている。 δ(x) は, sin gx/πx という関数の g→∞ の極限として表わすこともできる。 δ(x) の定義によって,δ(-x)=δ(x) となるから δ(x) は偶関数,また δ'(-x)=-δ'(x) となるから δ'(x) は奇関数である。 出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報 |
<<: Delta Plan - Delta Plan (English spelling)
This clan descended from Prince Takechi, son of E...
A perennial aquatic plant of the Menyanthaceae fa...
…the highest decision-making body of the Mongol E...
...C.S. Lewis dealt with issues of good and evil ...
...In redox reactions, redox indicators that chan...
A general term for aggressive, carnivorous mammals...
This is an archaeological site (historic site) fro...
〘noun〙 A network of radio and television stations ...
A type of ancient drinking tableware. It is a horn...
…The underside is usually not lighter than the ba...
...This law has been inherited by the French Civi...
…A general term for arthropods in the order Scolo...
A fabric made from camel hair. The soft hair is li...
A leader of the peasant movement in the early day...
An evergreen fern of the Lycopodaceae family. Its...