δ function - delta function

Japanese: δ関数 - デルタかんすう(英語表記)δ-function
δ function - delta function
A function introduced by P.A. Dirac to formulate quantum mechanics. Even though δ( x )=0 when x ≠0, the integral in any domain including the point x =0 is
A function δ( x ) is a function that satisfies the following: For any function f ( x ) that is continuous at x = 0,
may be defined as a function that satisfies. However, the integration domain can be any as long as it includes x = 0. δ( x ) has a strong singularity at x = 0, so it cannot be considered an ordinary function, but mathematically it has a rigorous basis as a generalized function. δ( x ) can also be expressed as the limit of the function sin gxx as g → ∞. By the definition of δ( x ), δ( -x ) = δ( x ), so δ( x ) is an even function, and δ'(- x ) = -δ'( x ), so δ'( x ) is an odd function.

Source: Encyclopaedia Britannica Concise Encyclopedia About Encyclopaedia Britannica Concise Encyclopedia Information

Japanese:
量子力学を定式化するために,P.A.M.ディラックが導入した関数。 x≠0 のとき δ(x)=0 であるにもかかわらず,x=0 の点を含む任意の領域での積分が
を満足するような関数 δ(x) のことをいう。あるいは,x=0 で連続な任意の関数 f(x) に対して,
を満足する関数と定義してもよい。ただし,積分領域は x=0 を含んでいれば任意でよい。 δ(x) は x=0 で強い特異性をもつから,通常の関数とはいえないが,数学的には超関数として厳密な基礎づけがなされている。 δ(x) は, sin gxx という関数の g→∞ の極限として表わすこともできる。 δ(x) の定義によって,δ(-x)=δ(x) となるから δ(x) は偶関数,また δ'(-x)=-δ'(x) となるから δ'(x) は奇関数である。

出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報

<<:  Delta Plan - Delta Plan (English spelling)

>>:  Tell Zeror

Recommend

Caloric theory

→ Calorie theory Source : Heibonsha Encyclopedia A...

Sintering

When fine powder is heated to high temperatures, ...

Firearms and Swords Possession Control Law

This law stipulates necessary regulations for the...

Laurana

Italian sculptor and architect. He was active not ...

coffee house

… [Europe] European coffee shops, which became po...

baryta paper

...It consists of three layers: the support, the ...

Akiaji - Akiaji

→ Salmon Source: Shogakukan Encyclopedia Nipponic...

Matsuyama [town] - Matsuyama

A former town in Akumi County, in the eastern part...

Return to Wihwa Island - Ikato Kaigun

…Yi Seong-gye excelled in military ability and ma...

Helmet making - Helmet making

…(11) Koshu Houses: Around Shioyama in Yamanashi ...

American Mastodon

...In the latter two genera, the lower tusks are ...

Potamogeton cristatus (English spelling)

…[Maki Sachiko]. . . *Some of the terminology tha...

Trigonometry

A method of calculating geometric shapes using tr...

Middle ear

The part of the ear that is located between the o...

Rufinus, Tyrannius

Born: circa 345. Concordia, near Aquileia [Died] 4...