Born: October 6, 1831 in Braunschweig Died: February 12, 1916. Braunschweig. German mathematician. After graduating from the Carolinian High School (1848-50), he entered the University of Göttingen (50) where he was taught by C. Gauss. He was a private lecturer at the University of Göttingen (54) and a professor at the Swiss Federal Institute of Technology in Zurich (58). In 1862, he became a professor at the Technical University of Braunschweig. Although he was isolated from his contemporaries, he maintained a long-standing relationship with G. Cantor, and recognized the value of Cantor's set theory, which was hardly understood by scholars at the time, writing him many letters of encouragement. His main achievements were introducing the concept of "cuts" to define irrational numbers, which paved the way to a complete definition of real numbers, and introducing the concept of "ideals" to contribute to the development of the theory of algebraic numbers. His work on dual groups (97, 1900) can be said to be a precursor to the modern theory of lattices, which has been developed since 1933. His major works include "Continuity and Irrational Numbers" (1872), "The Theory of Algebraic Numbers" (79), and "What Numbers Are and Should Be" (88). Source: Encyclopaedia Britannica Concise Encyclopedia About Encyclopaedia Britannica Concise Encyclopedia Information |
[生]1831.10.6. ブラウンシュワイク [没]1916.2.12. ブラウンシュワイク ドイツの数学者。カロリン高等学校 (1848~50) を経て,ゲッティンゲン大学に入り (50) ,C.ガウスの指導を受けた。ゲッティンゲン大学の私講師 (54) ,チューリヒのスイス連邦工科大学教授 (58) 。 1862年からブラウンシュワイク工科大学の教授となる。同時代の数学者から孤立した立場にあったが,G.カントルとの交際は長く続いて,当時の学者にほとんど理解されなかったカントルの集合論の価値を認め,何度も激励の手紙を書いた。おもな業績は,「切断」の概念を導入して無理数を定義し,これによって実数の完全な定義にいたる道を開いたことと,「イデアル」の概念を導入して代数的数に関する理論の発展に貢献したことである。また双対群についての研究 (97,1900) は,1933年以降に発展した束の現代的理論のさきがけともいうべきものである。主著に『連続性と無理数』 (1872) ,『代数的数の理論』 (79) ,『数とは何であり,また何であるべきか』 (88) などがある。 出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報 |
<<: The Book of Dede Korkut - The Book of Dede Korkut
>>: Te Deum (English spelling) [Latin]
…A beagle dog that appears in the newspaper comic...
A political crisis that shook the French Third Rep...
…The following year, he had his right knee amputa...
...The party dropped its anti-war stance and swit...
...Then, in the following year, 1571, he burned d...
...A hypothetical satellite's speed on the Ea...
...A species of the family Ploceidae in the order...
...Several species are cultivated for flower beds...
…The Chinese name for Cedrela is either Camellia ...
… [Munemin Yanagi]. … From [Awamori Shouma (Awamo...
…Various types of vertical take-off and landing a...
A regional brand of the Kinki region, Kyoto prefec...
...The name derives from the term macchia (color ...
…The discovery of children here meant the enclosu...
...A photograph that shows an image that is not n...