Desargues' theorem - Desargues' theorem

Japanese: デザルグの定理 - でざるぐのていり
Desargues' theorem - Desargues' theorem

When a tetrahedron O-ABC, whose base triangle ABC is on plane π, is cut by another plane π', a triangle A'B'C' is created on π' as shown in Figure A. In this case, points P, Q, and R are on both plane π and π', so they naturally lie on line g, the intersection of π and π'. If you take a photograph of this tetrahedron from an appropriate direction, you get Figure B. Desargues' theorem is the following theorem represented by Figures A and B. "In △ABC, △A'B'C', if the intersections P, Q, and R of corresponding sides BC and B'C', CA and C'A', and AB and A'B' lie on a straight line, then the three straight lines AA', BB', and CC' connecting the corresponding vertices will meet at a single point."
Here, we have discussed planes or spaces that introduce points at infinity, so for example, if sides BC and B'C' are parallel, their intersection P means the point at infinity on the line BC. The relationship "point P is on line g" or "line g passes through point P" is called a conjunction, and is the most primitive relationship in geometry. Desargues' theorem is a fundamental theorem regarding this conjunction. Figure A can be considered as a projection of triangle ABC from point O and cut by plane π'. Projective geometry studies the properties that do not change with such projection and cutting, and conjunctions and anharmonic ratios are projective geometric properties. Desargues opened the door to projective geometry, and was the first to introduce the idea of ​​infinity to geometry by considering that parallel lines intersect at infinity. Figure B of Desargues' theorem consists of 10 (intersections) points and 10 lines, and it is interesting that three lines pass through each (intersection), and each line has three (intersections).

[Tachibana Shunichi]

[Reference] | Projective Geometry
Desargues' Theorem Explained (Figure A)
©Shogakukan ">

Desargues' Theorem Explained (Figure A)

Desargues' Theorem Explained (Figure B)
©Shogakukan ">

Desargues' Theorem Explained (Figure B)


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

底面の三角形ABCが平面π上にある四面体O‐ABCを他の平面π′で切ると、図Aのようにπ′上に三角形A′B′C′ができる。このとき点P、Q、Rは平面π上にもπ′上にもあるから、当然π、π′の交わりである直線g上にある。この四面体を適当な方向から写真に撮れば図Bとなる。デザルグの定理は図A図Bが表す次の定理である。「△ABC,△A′B′C′において、対応辺BCとB′C′、CAとC′A′、ABとA′B′の交点P、Q、Rが一直線上にあれば、対応する頂点を結ぶ三直線AA′、BB′、CC′は一点に会する。」
 ここでは無限遠点を導入した平面または空間について述べたから、たとえば辺BCとB′C′とが平行ならば、それらの交点Pとは直線BC上の無限遠点の意味である。「点Pが直線g上にある」とか、「直線gが点Pを通る」という関係を結合関係といい、幾何学のもっとも原始的な関係である。デザルグの定理はこの結合関係に関する基本的定理である。図Aは、三角形ABCを点Oから射影し、平面π′で切断したと考えられる。このような射影と切断で変わらない性質を研究するのが射影幾何学であり、結合関係や非調和比は射影幾何学的性質である。デザルグは射影幾何学の端緒を開き、また平行線は無限遠点で交わると考えて幾何学に初めて無限遠の考えを導入した。デザルグの定理の図Bは10個の(交)点と10本の直線よりなり、各(交)点をそれぞれ3本の直線が通り、各直線上にはそれぞれ3個の(交)点があるというおもしろさもある。

[立花俊一]

[参照項目] | 射影幾何学
デザルグの定理説明図〔図A〕
©Shogakukan">

デザルグの定理説明図〔図A〕

デザルグの定理説明図〔図B〕
©Shogakukan">

デザルグの定理説明図〔図B〕


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Pros Thessalonikeis; Letters to the Thessalonians

>>:  Gérard Desargues

Recommend

Tijuana - Tijuana (English spelling)

A tourist city in Baja California, in the northwe...

foxglove

...The capsule is oval and 1.5 cm long. The genus...

manslaughter

...In addition, 192 cases (12%) of neonatal murde...

Knitwear

A general term for clothing made from knitted fabr...

Thread-changing economic situation

...Also, the rationing, price and facility contro...

Theologie der Krisis (English spelling) TheologiederKrisis

…After World War I, a theological movement arose ...

School training - gakkou kyoren

Military education was imposed as a regular curric...

Theodore Roethke

1908‐63 American poet. Born in Michigan in the Mid...

Leonurus macranthus (English spelling) Leonurusmacranthus

…[Murata Gen]. … *Some of the terminology that me...

Itogamodori - The return of the thread

...It has many local names, such as Shimaara in N...

Solutre culture - Solutre culture (English spelling)

A late Paleolithic culture with the Solutre site ...

Fénelon (English spelling) François de Salignac de La Mothe-Fénelon

French author and archbishop. Born into an old no...

Yalut [island] - Yalut

A coral island in the western Pacific Ocean, part ...

Common Chemical Sense

…In addition, some insects have contact chemosens...

Cytogenetics

...Currently, research subjects include morpholog...