(1) Regarding sets When we say the union of sets A and B , it can refer to the union when A , B ⊆ X , but it can also refer to A and B arranged without considering overlap. This is sometimes called a direct sum to distinguish it from a union set. By extension, the union of subsets can also be called a direct sum only when A ∩ B = φ. (2) Regarding commutative groups Let G be a commutative group with associative law for addition, and its subgroups G 1 and G 2. If x ∈ G , x 1 ∈ G 1 , and x 2 ∈ G 2 can be uniquely written in the form x = x 1 + x 2 , then G is said to be the direct sum of G 1 and G 2 , and this is represented as G 1 + G 2. (3) Regarding vector spaces Since arithmetic in vector spaces is additive, a direct product is sometimes called a direct sum. (4) Regarding subspaces of vector spaces Let V be a vector space over a field K , and its subspaces V1 and V2 . If each element x of V can be uniquely written as x = x1 + x2 with x1 ∈ V1 and x2 ∈ V2 , then V is said to be the direct sum of V1 and V2 , which is represented as V1 + V2 . In general, we write V1 + V2 = { x1 + x2 | x1 ∈ V1 , x2 ∈ V2 }, but this is not necessarily isomorphic to the direct sum (direct product) of V1 and V2 . Therefore , in particular, the case where it is isomorphic is called a direct sum. Source: Encyclopaedia Britannica Concise Encyclopedia About Encyclopaedia Britannica Concise Encyclopedia Information |
(1) 集合に関して 集合 A と B との和集合というときに,A ,B⊆X の場合の合併をさす場合もあるが,A と B を重なりを考えずに並べたものをいう場合もある。これを合併集合と区別するために直和ということもある。転じて,部分集合の合併についても,A∩B=φ の場合に限って直和ということもある。 (2) 可換群に関して 加法に関する結合法をもつ可換群を G ,その部分群を G1 ,G2 とする。もし任意の元 x∈G ,x1∈G1 および x2∈G2 によって,x=x1+x2 の形に一意的に書けるとき,G は G1 と G2 の直和であるといわれ,これを G1+G2 で表わす。 (3) ベクトル空間に関して ベクトル空間の算法は加法なので,直積のことを直和ということもある。 (4) ベクトル空間の部分空間に関して 体 K の上のベクトル空間を V ,その部分空間を V1 ,V2 とする。もし V のおのおの元 x が,x1∈V1 および x2∈V2 によって,一意的に x=x1+x2 と書けるとき,V は V1 と V2 の直和であるといい,これを V1+V2 で表わす。一般にも,V1+V2={x1+x2|x1∈V1,x2∈V2} と書くが,これは V1 と V2 の直和 (直積) と同型とはかぎらない。それで特に,同型になる場合を直和というのである。
出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報 |
>>: Song of the Imperial Guard
A novel by Keiko Kobayashi. In 1978, it won an hon...
A type of military training school for the Edo Sho...
...There are cases where steam is stored in the f...
A Kamo Shrine's land kitchen located in Kawabe...
... In Portugal, the Monastery-Church of Our Lady...
Written by Motoori Shuntei. 2 volumes. Published i...
...When moving into a new house, it was necessary...
…The American suspension bridges were in a golden...
〘Noun〙① A job title in the Kamakura Shogunate. The...
French painter. His real name was Hyppolyte Delar...
…It is handed down in Plutarch's Life of Lycu...
There are two usages: (1) when it means a change i...
A poet from the Qing Dynasty of China. His pen na...
Founded in 1879 by Shibusawa Eiichi and jointly fu...
...A genealogy of the ancient great clan, the Ona...