Manifold - Manifold

Japanese: 多様体 - たようたい
Manifold - Manifold

A topological space modeled on Euclidean space is called a manifold. The simplest figure is a point, which is called a x-dimensional manifold. Among line figures, lines, half lines, circles, and line segments that extend infinitely to the left and right are one-dimensional manifolds ( Figure A ). In contrast, line figures such as those in Figure B are not manifolds. That is, the set of points in the vicinity of point P in Figure B , that is, near point P, is a cross in (a) and a T-shape in (b), which is not a line segment in either case.

A surface figure is called a two-dimensional manifold if the neighborhood of each point is the same topology as a disk. Planes, spheres, disks, and tori (torus surfaces) as shown in Figure C are manifolds, but a figure like (e), which is a sphere with a rectangle attached to it, is not a manifold because the neighborhood of the attached point P is not a disk. A three-dimensional figure in which the neighborhood of each point is a sphere (i.e. a three-dimensional sphere) is a three-dimensional manifold, and ordinary three-dimensional space and a three-dimensional sphere are themselves three-dimensional manifolds. Similarly, an n-dimensional figure in which the neighborhood of each point is an n-dimensional sphere is called an n-dimensional manifold. n-dimensional space and an n-dimensional sphere are n-dimensional manifolds. Manifolds are divided into those without boundaries, such as planes, spheres, and tori, and those with boundaries, such as disks (the boundary of a disk is its circumference). The neighborhood of each point in a manifold without a boundary is an open sphere obtained by removing the boundary from a sphere. Therefore, if we imagine a nearsighted insect on a two-dimensional manifold without a boundary, wherever the insect is, it will always see the same open disk (a disk without the boundary circumference), i.e., it will always see the same scenery. Furthermore, spheres and tori are closed sets with finite size in space, and are called closed manifolds (closed surfaces in the two-dimensional case).

When a manifold can be triangulated and regarded as a polyhedron, it is called a combinatorial manifold, and when a differential structure can be introduced into the manifold, it is called a differentiable (manifold).

[Hiroshi Noguchi]

[Reference] | Differential Topology
〇Dimensional manifolds and one-dimensional manifolds (Figure A)
©Shogakukan ">

〇Dimensional manifolds and one-dimensional manifolds (Figure A)

A non-manifold line figure (Figure B)
©Shogakukan ">

A non-manifold line figure (Figure B)

Figures of manifolds and non-manifolds (Figure C)
©Shogakukan ">

Figure C: Manifold and non-manifold shapes


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

ユークリッド空間をモデルとした位相空間を多様体という。いちばん単純な図形は点であり、これは〇(れい)次元多様体という。線の図形のうち、左右無限に延びている直線、半直線、円周、線分が一次元多様体である(図A)。これに対して図Bのような線の図形は多様体ではない。すなわち、図Bで点Pの近傍、つまり点Pの近くにある点の集合が、(a)では十字形であり、(b)ではT字形であり、どちらにしろ線分ではないからである。

 面の図形は、その各点で、その近傍が円板と同位相になるものを二次元多様体という。図Cのような、平面や球面や円板やトーラス(輪環面)は様体であるが、球面に矩形(くけい)などを取り付けた(e)のような図形は、取り付けた点Pの近傍が円板でないので多様体ではない。各点の近傍が球体(つまり三次元球体)となるような三次元的図形が三次元多様体で、普通の三次元空間や三次元球体自身はそれぞれ三次元多様体である。同様に、各点の近傍がn次元球体となるようなn次元的図形をn次元多様体という。n次元空間やn次元球体はn次元多様体である。多様体は、平面や球面やトーラスのように境界のないものと、円板のように境界(円板はその円周が境界となる)をもつものとに分かれる。境界のない多様体の各点の近傍は球体からその境界を除いた開球体となる。よって境界のない二次元多様体上に近眼の虫がいると仮定すると、虫はどこにいても同じ開円板(境界の円周を省いた円板)、つまりいつも同じ景色を眺めていることになる。さらに球面やトーラスは空間の中で有限の大きさをもつ閉集合であり、閉じた多様体(二次元の場合、閉曲面)という。

 多様体が三角形分割できて多面体とみなせるとき、組合せ多様体といい、さらに多様体に微分構造が導入できるとき微分(可能)多様体という。

[野口 廣]

[参照項目] | 微分トポロジー
〇次元多様体と一次元多様体〔図A〕
©Shogakukan">

〇次元多様体と一次元多様体〔図A〕

多様体ではない線の図形〔図B〕
©Shogakukan">

多様体ではない線の図形〔図B〕

多様体の図形と多様体ではない図形〔図C〕
©Shogakukan">

多様体の図形と多様体ではない図形〔図C…


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Tara - Tara (English spelling) codfish

>>:  Tayumoto - Tayumoto

Recommend

Slope of lift curve

…If you plot a graph with the angle of attack α o...

Shvartsman, LI (English spelling) ShvartsmanLI

…In his French books he signed himself Leo Chesto...

Ingushetia Autonomous Oblast

...After revolution and civil war, the country wa...

Respect - Sonsho

1562-1620 Ada-Toyotomi - A monk from the early Ed...

sajjada (English spelling) sajjada

… Carpets are woven in a rectangular shape, with ...

Photon echo

A spectroscopic phenomenon that has a perfect anal...

Takiginou - Firewood Noh

(1) Shinto Noh originated from the offering of fi...

External Inhibition

...In contrast, in pathological or emotionally ex...

Capsid (English spelling)

(Also called "capsid") A protein that fo...

Terebratulina japonica (English spelling)

… As mentioned above, the living brachiopoda are ...

Election interference

It refers to direct interference by public author...

Water civet (water musk cat)

Also known as the cynogale. An aquatic mammal of t...

Kamuruchi (English spelling) snake head

A freshwater fish belonging to the family Cobweb ...

Ligature

… [Modal Notation] From the end of the 12th centu...

Aster savatieri (English spelling) Astersavatieri

...Also, E. alpinus L. (English name Alpine fleab...