A problem dealing with a system in which multiple particles or objects that can be considered as particles (point masses in mechanics) are moving while exerting forces on each other. Most problems in physics can be said to be many-body problems, but when the number of particles is three or more, it is not possible to analytically find a solution in either classical or quantum mechanics, so various approximation methods must be used depending on the problem. If the force that tries to return a particle to its original position when it is slightly displaced from its equilibrium position is proportional to the displacement, the particle system can be analyzed as a coupled vibration. Examples of this are the vibration of molecules and the thermal vibration of solid crystals. Furthermore, a multi-particle system has the form of a wave (often a standing wave). An approximation to the limit where tiny particles are densely distributed is the elastic wave or standing vibration of a continuum. In addition, the quantum mechanical analysis of the state of electrons in metals and nucleons (protons and neutrons) in atomic nuclei is also called a many-body problem. In these cases, collective vibrations in which many particles move simultaneously are quite common, such as waves similar to sound waves, plasma vibrations occurring in charged particle systems, and vibrations of atomic nuclei in droplets. Determining the relationship between wavelength and frequency of such waves is also a research topic in many-body problems. [Akio Koide and Masao Ogata] Many-body problems in astronomyIn astronomy, a many-body problem is the determination of the motion of multiple celestial bodies moving under Newton's law of universal gravitation. Even the case of three masses (three-body problem) cannot be generally solved, so it is impossible to solve a general many-body problem. A central figure solution corresponding to the equilateral triangle solution, which is a special solution to the three-body problem, exists in many-body problems, but there is no example of it in the real solar system. The solar system has a hierarchical structure, with planets that are less than one-thousandth of the mass of the sun, and satellites that are even less than a few tens of times the mass of the planets. Therefore, planets can be approximated as a two-body problem with the sun, and satellites with the planets, and the gravitational forces of other celestial bodies can be treated as perturbations, and short-term (several million years) motions can be determined in detail using perturbation theory. [Kinoshita Sora] "Introduction to Many-Body Problems" by Nishiyama Toshiyuki (1975, Kyoritsu Publishing)" ▽ "Many-Body Problems - An Approach from the Electron Gas Model" by Takada Yasutami, edited by Arafune Jiro, Ezawa Hiroshi, Nakamura Koichi, and Yonezawa Fumiko (1999, Asakura Publishing)" ▽ "30 Lectures on Condensed Matter Physics" by Toda Morikazu (2000, Asakura Publishing) " ▽ "An Invitation to Mathematical Physics 3: On the Latest Trends" edited by Ezawa Hiroshi (2000, Yuseisha) " ▽ "Solid State Physics - For Engineering" by Okazaki Makoto (2002, Shokabo Publishing)" ▽ "Iwanami Lectures on the World of Physics: Mechanics 4 - Solvable and Unsolvable Problems in Mechanics" by Yoshida Haruo (2005, Iwanami Shoten)" ▽ "Earth and Planetary Sciences 7: Numerical Earth Sciences" by Akimasa Sumi, Toshio Terazawa, Toshiki Iwasaki, Masahiro Endo, Masaki Ogawa, and Shunichi Ebisuzaki (New Edition) (2010, Iwanami Shoten) [Reference items] | | | | | | | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
粒子または粒子とみなすことのできる物体(力学でいう質点)が複数個互いに力を及ぼし合いながら運動している系を扱う問題。物理学で扱う問題の大部分は多体問題であるともいえるが、粒子数が3個以上のときには、古典力学でも量子力学でも、解を解析的に求めることはできないので、問題に応じたさまざまな近似法を用いなければならない。つり合いの位置から各粒子がすこしだけ変位したとき、粒子を元に戻そうとする力が変位に比例する場合には、この粒子系は連成振動として解析することができる。分子の振動や固体結晶の熱振動がこの例である。さらに、多粒子の系では波動(多くの場合は定常波)の形をもつ。微小粒子が密に分布した極限に近似のものが、連続体の弾性波や定常振動である。また、金属中の電子や原子核中の核子(陽子と中性子)の状態を量子力学的に解析することも多体問題とよばれる。これらの場合、多数の粒子が同時に動く集団振動はかなり一般的に存在し、音波に類似の波や、荷電粒子系でおこるプラズマ振動、液滴状の原子核の振動などがある。そのような波の、波長と振動数の関係などを求めることも多体問題の研究課題である。 [小出昭一郎・小形正男] 天文学における多体問題天文学における多体問題とは、ニュートンの万有引力のもとに運動している複数の天体の運動を求めることをいう。3個の質点の場合(三体問題)ですら、一般的に解くことができないので、一般の多体問題を解くことは不可能である。三体問題の特殊解である正三角形解に対応する中心図形解は多体問題に存在するが、現実の太陽系内に、その例は存在しない。太陽系は、太陽の質量の1000分の1以下である惑星、その惑星の質量のさらに数十分の1以下の衛星というように階層構造をなしている。したがって、惑星は太陽との、衛星は惑星との二体問題として近似することができ、他の天体の引力は摂動(せつどう)として取り扱い、短期間(数百万年)の運動は摂動論を用いて詳しく求めることができる。 [木下 宙] 『西山敏之著『多体問題入門』(1975・共立出版)』▽『荒船次郎・江沢洋・中村孔一・米沢富美子編、高田康民著『多体問題――電子ガス模型からのアプローチ』(1999・朝倉書店)』▽『戸田盛和著『物性物理30講』(2000・朝倉書店)』▽『江沢洋編『数理物理への誘い3 最新の動向をめぐって』(2000・遊星社)』▽『岡崎誠著『固体物理学――工学のために』(2002・裳華房)』▽『吉田春夫著『岩波講座 物理の世界 力学〈4〉――力学の解ける問題と解けない問題』(2005・岩波書店)』▽『住明正・寺沢敏夫・岩崎俊樹・遠藤昌宏・小河正基・戎崎俊一著『地球惑星科学〈7〉――数値地球科学』(新装版)(2010・岩波書店)』 [参照項目] | | | | | | | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Abortion drug - abortion drug
...Also, Artemisia capillaris, Artemisia umbellat...
1906‐70 American mathematician. Born in Zagreb, Yu...
...In general, there are few linguistic documents...
An encyclopedic dictionary compiled in Byzantium t...
…[Hiroshi Inoue]. … *Some of the terminology that...
…In England, the word sensualist had been in use ...
A unit in the Army organizational system, general...
…The Galilee Mountains (Jibāl al‐Jalīl) at the no...
...Indian thinker and master of the Mīmāṃsā schoo...
Born: February 11, 1839 in New Haven, Connecticut ...
Born: May 12, 1802, in Lessis-sur-Ursus Died Novem...
… [Types and propagation] There are about 37 kind...
The first of Jesus' twelve apostles. The firs...
...A type of Japanese percussion instrument. Also...
→ Osaka classic Source : Heibonsha Encyclopedia Ab...