Logarithm - arithmetic

Japanese: 対数 - たいすう
Logarithm - arithmetic

When a is a constant, for a number x ,
x = a y ……(1)
The number y that satisfies is called the logarithm of x (with a as the base),
y = log a x ……(2)
(log is an abbreviation of the English word logarithm). In other words, (1) and (2) are equivalent. In this case, x is called the real number of y . For example, 8=2 3 and 0.01=10 -2 , so 3=log 2 8 and -2=log 10 0.01, respectively. y = log a x is the inverse function of the exponential function y = a x , and if a is a positive number other than 1, then for any positive number x , there is one and only one logarithm y with a as the base. In what follows, we will assume that a > 0 and a ≠ 1 for the base, and that the real number is positive. Since 1= a 0 and a = a 1 , log a 1=0 and log a a =1 always hold. Also, if α=log a A and β=log a B , then A = a α , B = a β , and by the law of exponents, AB = a αa β = a α+β , or log a AB = α+β, and therefore log a AB
=log a A +log a B ……(3)
Similarly, log a ( A / B )
=log a A -log a B ……(4)
Let p be any real number, and log a A p = p log a A. In particular, let n be a natural number.

These formulas lead to the following. The product and quotient of two positive numbers A and B can be found by using the sum and difference of their logarithms. The nth power and nth root of a positive number A can also be found by using n times and 1/ n of log a A , respectively. The following relationship exists between logarithms with different bases:

log a A =log b A /log b a ……(6)
This type of calculation is called logarithmic calculation.

Logarithms with base 10 are called common logarithms. The following calculations can be performed on common logarithms.

log 10 2000
=log 10 (2× 103 )
=3+log 10 2
log 10 0.002
=log 10 (2× 10-3 )
=-3+log 10 2
In the same way, from the value of log 10 2, we can find the logarithm of a number of the form 2 × 10 n , where n is an integer. In general, if the value of log 10 x is given, for x in the range 1≦ x < 10, we can find the logarithm of a number of the form x × 10 n . A table of common logarithms of numbers in this range is called a logarithm table. For example, from the logarithm table we obtain log 10 3.14=0.4969. Therefore, log 10 3140=3+log 10 3.14
=3.4969
log 10 0.0314=-2+log 10 3.14
=.4969
As can be seen from the last of these forms, when finding a logarithm from a logarithm table, it is convenient to separate it into an integer part, such as 3, and a decimal part, such as 4969. The former is called the index, and the latter the mantissa. The index is the same as - n .

As an example of calculation using logarithms:

Let's find the value of .


Therefore, x = 0.9528
In the last step mentioned above, a logarithm table can be used inversely to find x from the value of log 10 x , but for this purpose, an inverse logarithm table, which corresponds the real number value to the logarithm value, i.e., a table of values ​​y = 10 x (0≦ x < 1), has also been created.

For a long time, logarithmic calculations have been useful in reducing the effort required for numerical calculations, but in recent years, with the development of computers, their use has decreased. A logarithmic scale is a number line with the coordinates log 10 x marked with x . Graph paper using this scale is called logarithmic graph paper, and is used to find empirical formulas. In addition to common logarithms, logarithms with base e are also widely used.

[Tsuneo Uetake]

[Reference] | Inverse functions | Exponential functions | Natural logarithm

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

aを定数とするとき、数xに対し、
  x=ay……(1)
を満たす数yを、(aを底(てい)とする)xの対数といい、
  y=logax……(2)
と書く(logは、対数を意味する英語logarithmを略した記号)。すなわち、(1)と(2)は同値である。このとき、xyの真数という。たとえば、8=23,0.01=10-2であるから、それぞれ3=log28,-2=log100.01である。y=logaxは指数関数y=axの逆関数であり、aを1でない正の数とすれば、どんな正の数xに対しても、aを底とする対数yが一つだけ定まる。以下、底についてはa>0,a≠1、真数については正とする。1=a0,a=a1であるから、つねにloga1=0,logaa=1が成り立つ。また、α=logaA,β=logaBとすればA=aα,B=aβで、指数法則によりAB=aαaβ=aα+βすなわちlogaAB=α+β、したがって
  logaAB
   =logaA+logaB……(3)
が成り立つ。同様にして
  loga(A/B)
   =logaA-logaB……(4)
pを任意の実数としてlogaAp=plogaAで、とくに、nを自然数として

が導かれる。これらの公式から、二つの正の数ABの積、商がそれぞれの対数の和、差を利用して求められる。また、正の数An乗、n乗根がそれぞれlogaAn倍、n分の1を利用して求められる。なお、異なる底をもつ対数の間には次の関係がある。

  logaA=logbA/logba……(6)
このような計算を対数計算という。

 10を底とする対数を常用対数という。常用対数については次のような計算ができる。

  log102000
      =log10(2×103)
      =3+log102
  log100.002
      =log10(2×10-3)
      =-3+log102
同じようにして、log102の値から、nを整数として2×10nの形の数の対数の値を求めることができる。一般に1≦x<10の範囲にあるxについて、log10xの値が与えられればx×10nの形の数の対数の値を求めることができる。この範囲にある数の常用対数の値の表が対数表である。たとえば対数表からlog103.14=0.4969が得られる。よって
  log103140=3+log103.14
       =3.4969
  log100.0314=-2+log103.14
       =.4969
これらの最後の形をみればわかるように、対数表から対数の値を求めるときは、3、のような整数部分と、4969のような小数部分に分けて扱うと都合がよい。前者を指標、後者を仮数とよぶ。指標は-nと同じ意味である。

 対数を用いる計算例として

の値を求めてみよう。


よって x=0.9528
前述の最後でlog10xの値からxを求めるのに対数表を逆に用いてもよいが、このために、対数の値に真数の値を対応させた逆対数表、すなわちy=10x(0≦x<1)の値の表もつくられている。

 長い間、対数計算は数値計算の労力を減らすのに役だってきたが、近年、コンピュータの発達によって、利用されることが少なくなった。数直線で、座標log10xの点にxと目盛ったものを対数目盛りとよぶ。この目盛りを用いた方眼紙を対数方眼紙といい、実験式を求めたりするのに利用される。常用対数のほかに、eを底とする対数も広く用いられている。

[植竹恒男]

[参照項目] | 逆関数 | 指数関数 | 自然対数

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Algebra - daisuugaku (English spelling) algebra

>>:  Soybean - Glycine max; soybean; soya bean

Recommend

Loxoblemmus doenitzi (English spelling) Loxoblemmus doenitzi

…[Yamazaki Harane]. … *Some of the terminology th...

Heronius (English spelling) swamp pink

A perennial plant of the lily family native to eas...

Pitti, L. (English spelling) PittiL

…The national art museum in Florence, Italy. Also...

Wild West Show

The Buffalo Bill Show was organized in 1883 by the...

failure rate

…These characteristic values ​​are explained belo...

neuroblast

…In general, neurons are formed earlier than glia...

Nakatsu [village] - Nakatsu

A village in Hidaka County, central Wakayama Prefe...

Archer, FS (English spelling) ArcherFS

…The first bright lens was a portrait lens with f...

Emergency excavation survey

...Administrative excavations are conducted when ...

Yamuna [river] - Yamuna

Also known as the Jamuna. A tributary of the Ganga...

Edward VI - Edward

King of England (reigned 1547-1553). Son of Henry ...

Afonso I

1109?‐85 The first king of Portugal, who establish...

Yachiyo [town] - Yachiyo

A former town in Takada County, central Hiroshima ...

Kazan Observatory - Kazantenmondai

An astronomical observatory attached to the Kyoto...

Apidium - Apidium

…A large number of Oligocene primate fossils have...