Geometric mean

Japanese: 相乗平均 - そうじょうへいきん
Geometric mean

For n positive numbers a 1 , a 2 ,……, a n , the nth root of the product of these n numbers

is called the geometric mean of a 1 , a 2 , …, a n . It should be noted that the geometric mean is defined only when a i (i=1,2,……,n) are all positive numbers. The geometric mean is used as a representative value for indexes such as price indexes and income distributions.

When a1 , a2 , ..., an are positive numbers, let A, G, and H denote the arithmetic mean, geometric mean, and harmonic mean, respectively, and then H≦G≦A.
Here, if H=G, then a1 = a2 =……=a n , and if G=A, then a1 = a2 =……=a n . Also, if the geometric mean of positive numbers ai (1≦i≦n) is G, then logG is the arithmetic mean of loga i .

[Shigeru Furuya]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

n個の正数a1,a2,……,anに対して、これらn個の数の積のn乗根

をa1,a2,……,anの相乗平均または幾何平均という。相乗平均はai(i=1,2,……,n)がすべて正数のときに限って定義されるものであることに注意しなければならない。相乗平均は物価指数などの指数や所得分布の代表値として用いられる。

 a1,a2,……,anが正数のとき、これらの相加平均、相乗平均、調和平均をそれぞれA、G、Hで表すと
  H≦G≦A
が成り立つ。ここでH=Gであればa1=a2=……=anであり、G=Aであればa1=a2=……=anである。また、正数ai(1≦i≦n)の相乗平均をGとするとlogGはlogaiの相加平均になっている。

[古屋 茂]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Bedded manganese deposit

>>:  Dicotyledonous plants - Dicotyledonous plants

Recommend

Complete contract - Isshiki Ukeoi

This is a type of contract method that a building ...

Yoshida Kumaji - Yoshida Kumaji

Born: 1874. Yamagata Died in 1964. Tokyo education...

Khitan alphabet - Khitan

…The Liao script used to write the Khitan languag...

Intuition Professor (English: Anschauungsunterricht German)

This type of education allows children and studen...

Kawachi Dynasty

...The 15th emperor. Son of Emperor Chuai, his mo...

The Love Suicides of Kyosukeroku

...It is said that before the Hoei era (1704-11),...

Cannabis sativa; hemp

An annual plant of the mulberry family. Sometimes ...

Aijima Island

A small island in the Itsukinada Sea, about 10 km...

Gas Black

...The microscopic surface state is also differen...

Carbamic acid esters - Carbamic acid esters

→Urethane Source: Shogakukan Encyclopedia Nipponi...

Samarkand - Самарканд/Samarkand

The capital of Samarkand Province, Uzbekistan. It...

Declaration of public ownership of the sea surface - Kaimenkanyusengen

It was in 1875 (Meiji 8) that the Meiji government...

Wet dock

...If ships are built here, there is no need for ...

Courtaulds [company] - Courtaulds

A major British chemical manufacturer established ...

Public figure - Kunin

In the Middle Ages, this was a general term for o...