Let the functions x = x ( u , v ), y = y ( u , v ), z = z ( u , v ) that define a surface S be continuous and continuously differentiable at all points in its domain, i.e., S be smooth. Let P be a point on S and the coordinates of P be ( x0 , y0 , z0 ) . The tangent plane of S at P is the plane that satisfies the following equation: Here , x0 = x ( u0 , v0 ), y0 = y ( u0 , v0 ) , z0 = z ( u0 , v0 ). This equation can also be expressed as a vector equation , x = x ( u , v ) + λ(∂x/∂u) + μ( ∂x / ∂v ), with λ and μ as parameters. From this equation, we can see that the tangent plane is a plane determined by the tangent vectors ∂x / ∂u and ∂x / ∂v of the curve on the surface that passes through point P. In this case, point P is called the point of tangency, and the vector on the tangent plane at P is called the tangent vector or vector on the surface. Source: Encyclopaedia Britannica Concise Encyclopedia About Encyclopaedia Britannica Concise Encyclopedia Information |
曲面 S を定義する関数 x=x(u,v) ,y=y(u,v) ,z=z(u,v) がその定義域のすべての点で連続ですべて連続微分可能,すなわち S がなめらかであるとし,また S 上の1点をP ,P の座標を (x0,y0,z0) とする。P における S の接平面とは,次の方程式を満たす平面のことである。 ここで x0=x(u0,v0) ,y0=y(u0,v0) ,z0=z(u0,v0) である。この方程式は,λ,μ を媒介変数として x=x(u,v)+λ(∂x/∂u)+μ(∂x/∂v) のベクトル方程式で表わすこともできる。この式から,接平面は,点Pを通る曲面上の曲線の接線ベクトル ∂x/∂u,∂x/∂v によって決定される平面であることがわかる。このときの点P を接点,P における接平面上のベクトルを接ベクトルまたは曲面上のベクトルという。 出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報 |
>>: Setsubunsou (Setsubun grass) - Setsubunsou (English spelling) Eranthis pinnatifida
Official name: Republic of Vanuatu Area: 12,189 k...
Tuvalu is an archipelago consisting of nine atolls...
He was the head lama of the Buryat people of the T...
...After being influenced by Chinese culture, Rei...
...By replacing the 30° prism with one with a dif...
Italian anti-fascist and reformist socialist. Bor...
...Negidar is a self-proclaimed name meaning &quo...
…This was one of the intensifying incidents of th...
…(1) Mathematical barycenter When there are n poi...
A general term for compounds whose components are...
…It is also called a parasitic wasp or a parasiti...
Born: October 15, 1870 (Meiji 3), Nagoya [Died] No...
...Other species of unknown and rare trees are al...
…The clots formed by blood clotting in this way a...
A prefecture-level city on the Yellow Sea in the ...