Let the functions x = x ( u , v ), y = y ( u , v ), z = z ( u , v ) that define a surface S be continuous and continuously differentiable at all points in its domain, i.e., S be smooth. Let P be a point on S and the coordinates of P be ( x0 , y0 , z0 ) . The tangent plane of S at P is the plane that satisfies the following equation: Here , x0 = x ( u0 , v0 ), y0 = y ( u0 , v0 ) , z0 = z ( u0 , v0 ). This equation can also be expressed as a vector equation , x = x ( u , v ) + λ(∂x/∂u) + μ( ∂x / ∂v ), with λ and μ as parameters. From this equation, we can see that the tangent plane is a plane determined by the tangent vectors ∂x / ∂u and ∂x / ∂v of the curve on the surface that passes through point P. In this case, point P is called the point of tangency, and the vector on the tangent plane at P is called the tangent vector or vector on the surface. Source: Encyclopaedia Britannica Concise Encyclopedia About Encyclopaedia Britannica Concise Encyclopedia Information |
曲面 S を定義する関数 x=x(u,v) ,y=y(u,v) ,z=z(u,v) がその定義域のすべての点で連続ですべて連続微分可能,すなわち S がなめらかであるとし,また S 上の1点をP ,P の座標を (x0,y0,z0) とする。P における S の接平面とは,次の方程式を満たす平面のことである。 ここで x0=x(u0,v0) ,y0=y(u0,v0) ,z0=z(u0,v0) である。この方程式は,λ,μ を媒介変数として x=x(u,v)+λ(∂x/∂u)+μ(∂x/∂v) のベクトル方程式で表わすこともできる。この式から,接平面は,点Pを通る曲面上の曲線の接線ベクトル ∂x/∂u,∂x/∂v によって決定される平面であることがわかる。このときの点P を接点,P における接平面上のベクトルを接ベクトルまたは曲面上のベクトルという。 出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報 |
>>: Setsubunsou (Setsubun grass) - Setsubunsou (English spelling) Eranthis pinnatifida
〘Noun〙 Horizontal strokes that make up the hexagra...
A Japanese abbreviation of mini-communication. It...
A school of swordsmiths from Higo Province (Kumam...
...From the collapse of the military regime in 19...
This is a method to detect cold agglutinin, an ant...
〘Noun〙① According to the theory of Onmyou, the dir...
…The Romanov dynasty was established in 1613, and...
The abbreviation of Japan External Trade Organizat...
...Therefore, in order to predict and evaluate th...
Also called a force multiplier. A type of link mec...
…However, nowadays, universal counters using elec...
...However, there have been examples of large ear...
Refers to animals that have been genetically modi...
Born June 15, 1963 in Culver City, California. Ame...
This is the major work of D. Hume, a leading 18th ...