A theory of approximate solutions in celestial mechanics to discuss perturbations in the orbital motion of celestial bodies. Similar approximate solutions in mathematics and physics that have been generalized from this theory are also called perturbation theory. For example, if the algebraic equation f ( x ) = 0 can be solved exactly, but the equation f ( x ) + λg ( x ) = 0, which includes a small additional term, cannot be solved exactly, the simplest example of perturbation theory is to correct the former solution by λg ( x ) to obtain an approximate solution to the latter. The parameter λ is a measure of the size of the perturbation term λg ( x ), and the smaller λ is, the more effective this approximation method is. Perturbation theory is also often used in quantum mechanics and quantum field theory as an approximate solution to the Schrödinger equation Hψ = Eψ . In this equation, H is the Hamiltonian, E is an eigenvalue, and ψ is an eigenfunction. When H consists of a non-perturbed term H 0 and a perturbed term λ V , i.e., H = H 0 + λ V , and the equation H 0 φ = εφ can be solved exactly to obtain the eigenvalue ε and eigenfunction φ, perturbation theory involves successively applying corrections due to the perturbation λ V to ε and φ to obtain E and ψ in the form of a power series in λ. Perturbation solution methods include the successive approximation method, the series expansion method, and the WKB method, but special care is required when the eigenvalue ε is degenerate. Source: Encyclopaedia Britannica Concise Encyclopedia About Encyclopaedia Britannica Concise Encyclopedia Information |
天体力学において,天体の軌道運動の摂動を論じるための近似解法の理論。これが一般化した,数学や物理学における同様な近似解法をも摂動論という。たとえば,代数方程式 f(x)=0 は正確に解けるが,小さな付加項が加わった方程式 f(x)+λg(x)=0 が正確には解けない場合に,前者の解に λg(x) による補正を加えて後者の近似解を求めるのは摂動論の最も簡単な例である。パラメータ λ は摂動項 λg(x) の大きさの目安であって,λ が小さいほどこの近似法は有効となる。摂動論は量子力学や場の量子論でシュレーディンガー方程式 Hψ=Eψ の近似解法にもよく用いられる。この式で H はハミルトニアン,E は固有値,ψ は固有関数である。 H が非摂動項 H0 と摂動項 λV から成り立って H=H0+λV であり,方程式 H0φ=εφ は正確に解けて固有値 ε と固有関数 φ が求められている場合に,摂動論では ε と φ に摂動 λV による補正を次々と加えて E と ψ を λ のべき級数の形で求める。摂動解法には逐次近似法,級数展開法,WKB法などがあるが,固有値 ε が縮退している場合には特別の注意が必要である。
出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報 |
<<: Persuasion - Settoku (English spelling)
…Medicine [Tatsuno Takashi]. . . *Some of the ter...
German Romantic poet and natural scientist. Born ...
A patriot of the Sonnjou faction of the Choshu Do...
…However, an extreme policy of national isolation...
(1) An Indian grammarian around 150 B.C. His birt...
…The numerous bones are also organs that make up ...
A general term for the genus Nepenthes in the Nep...
...Afterwards, O. Foerster and W. Penfield create...
...The nation was formed around the 10th century,...
...It is also planted along streets and in parks....
Pulp that has been specially refined chemically. P...
...This includes seasonal workers who are importe...
…In a barren time when musical films were said to...
...A school established in Kagoshima for the samu...
〘 noun 〙 To marry anew. A woman who has lost her h...