Liquefaction of coal

Japanese: 石炭液化 - せきたんえきか(英語表記)liquefaction of coal
Liquefaction of coal

The process of producing petroleum-like liquid fuels and chemical raw materials from solid coal using various methods is called coal liquefaction, which is also called coal hydrocracking or coal hydrogenation (coal hydrogenation), and is roughly synonymous with the artificial petroleum used during World War II.

[Ueda Sei and Aramaki Toshihiro]

Developments and problems in coal liquefaction technology.

After World War II, the United States continued to develop its technology based on Germany's synthetic petroleum production technology, but the coal liquefaction methods that were being developed at the time were improvements and developments of the old German methods of low-temperature carbonization, direct liquefaction, and indirect liquefaction, and were basically the same as the prewar methods.

In the 1950s, research and development intensified against the backdrop of the Cold War between the United States and the Soviet Union, and the U.S. Bureau of Mines even planned a large plant with a daily coal processing capacity of 1,500 tons, which would completely absorb and develop German technology, but the plans were cancelled due to the easing of the Cold War and the discovery of huge reserves of Middle Eastern oil. However, the oil crisis of 1973 led to a worldwide recognition of the need for research and development of alternative energy sources to oil, which resulted in a significant promotion of research and development, especially in the United States.

During this time, there have been consistent efforts to improve the economics of coal liquefaction. With regard to reactors, remarkable progress has been made in terms of all chemical equipment, including design, materials, instrumentation, and automatic control, in conjunction with the development of the petrochemical industry, but the scale of commercial production has expanded by more than an order of magnitude. Research has continued using pilot plants of several tens to several hundred tons in order to realize a commercial-scale liquefaction plant capable of processing tens of thousands of tons of coal per day.

A drawback of the low-temperature carbonization method was that the liquid yield was low at 6-12%, but by developing a multi-stage carbonization method, in which the temperature is raised in stages, and a rapid heating method, it has become possible to completely squeeze out the low-temperature tar and increase the liquid yield to 25%.

In the direct liquefaction method, coal powder is mixed uniformly with a carrier oil and a catalyst, and the solid-liquid fluidized coal slurry is reacted under a high-temperature, high-pressure hydrogen atmosphere (where hydrogen coexists). In other words, solids (coal, catalyst), liquids (carrier oil), and gases (hydrogen), each of which has different properties, are reacted simultaneously under high temperature and pressure, making this a much more difficult technology than petroleum refining technology, which reacts only liquids. In order to reduce the reaction temperature and pressure as much as possible and reduce the technical difficulty and capital investment, various improvements have been made, including the development of inexpensive and highly active catalysts, the development of efficient methods for using expensive catalysts such as cobalt and molybdenum, rational methods for proceeding with liquefaction reactions based on the chemical structure of coal, and the use of carrier oils that can provide active hydrogen.

Indirect liquefaction is technically easier than direct liquefaction because coal is first gasified and then liquid hydrocarbons are synthesized again. However, no major development plans were pursued, mainly due to its low thermal efficiency. However, industrialization was possible only in the Republic of South Africa, which produced very cheap coal and was politically isolated from the rest of the world, and in 1955, SASOL began production of CTL (coal to liquids, synthetic liquid fuel) in Sasolburg. Stimulated by the subsequent oil crisis, production was expanded, with the construction of a second plant in Secunda in 1976, and the daily production scale of synthetic fuels has reached 175,000 barrels since 1982.

After the oil crisis, West Germany followed the United States in focusing on direct liquefaction, and promoted research and development of a new German method, including the completion of a pilot plant with a daily coal processing capacity of 200 tons in Bottrop, on the outskirts of Essen, in 1981. Other countries that were enthusiastic about direct liquefaction included Australia, the United Kingdom, France, Canada, and China.

In China, a direct liquefaction demonstration facility with a daily coal processing capacity of 6,000 tons was constructed (2004-2008) in the Inner Mongolia Autonomous Region, and it was reported to have operated for 300 hours in January 2009. Although detailed operating conditions since then have not been confirmed, China has become the only country in the world to have commercialized direct coal liquefaction technology.

[Ueda Sei and Aramaki Toshihiro]

Current situation in Japan

In Japan, basic research was continued at universities, national laboratories, and private companies, but after the 1950s, oil replaced coal and entered the golden age. However, the oil crisis hit just before liquefaction technology was completely wiped out, and research was actively promoted as part of the Sunshine Project, which was launched by the Agency of Industrial Science and Technology (now the National Institute of Advanced Industrial Science and Technology) in 1974 (Showa 49). Furthermore, in 1980, the New Energy Development Organization (now the New Energy and Industrial Technology Development Organization, abbreviated as NEDO) was established to promote industrialization research, and a pilot plant was built in Latrobe Barry with a daily lignite processing capacity of 50 tons using lignite from Victoria with the cooperation of the Australian government. Furthermore, from 1983, plans were made to build a pilot plant with a daily bituminous coal processing capacity of 250 tons, but it was scaled down to 150 tons and built in Kashima City, Ibaraki Prefecture.

In the trend of technological development after the Second World War, coal liquefaction has attracted attention not only as a method for producing liquid fuel, but also as a method for producing chemical raw materials (chemicals) to compete with petrochemicals. Taking advantage of the structural characteristics of coal, it aims to separate and refine aromatic organic chemicals such as phenol, naphthalene, and pyridine from liquefied oil, and has the potential to become a major pillar of coal chemistry, reducing the cost of coal liquefaction and at the same time being an effective utilization method that fulfills the dreams of chemical engineers.

The development of coal liquefaction technology is technically difficult, requiring a long period of time and huge amounts of funding, so it has been pushed forward with cooperation between industry, academia, government, and companies, as well as international cooperation. In 1984, a new company, Japan Coal Oil, was established for this purpose, and has achieved great success, such as obtaining process design data for continuous stable operation and scale-up through operational research on a 150-ton pilot plant. However, various remaining technical issues must be resolved for future industrialization, and this is likely to depend on the need for a stable energy supply and policy decisions.

[Ueda Sei and Aramaki Toshihiro]

"Coal Chemistry and Industry" by Hideo Kimura and Shuji Fujii (1977/Expanded Edition, 1984, Sankyo Publishing) " "Coal Conversion and Utilization Technology - Coal Liquefaction, Estimation of the Composition and Properties of Liquefied Oil" edited by Yuzo Sanada (1994, IPC)

[References] | Oil shock | Artificial petroleum | Coal | Coal gasification
Victorian brown coal two-stage hydroliquefaction process diagram
©Shogakukan ">

Victorian brown coal two-stage hydroliquefaction process diagram

Flow diagram of bituminous coal liquefaction pilot plant
©Shogakukan ">

Bituminous coal liquefaction pilot plant flow…


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

固体である石炭から種々の方法で石油類似の液体燃料や化学原料を製造することを石炭液化とよび、石炭ガス化と並び称せられる。石炭の水素化分解、石炭の水素添加(石炭の水添)ともいい、第二次世界大戦中の人造石油とほぼ同義語である。

[上田 成・荒牧寿弘]

石炭液化技術の開発と問題点

第二次世界大戦後アメリカはドイツの人造石油の製造技術を基に、絶え間ない技術開発を進めてきたが、当時進められていた石炭液化法は、旧ドイツ法である低温乾留法、直接液化法、間接液化法を改良発展させたもので、基本的には戦前の手法と変わらない。

 1950年代に米ソの冷戦時代を背景に開発研究は高まりをみせ、アメリカ鉱山局においてはドイツの技術を完全に吸収発展させた1日の石炭処理量が1500トンの大工場が計画されるまでになったが、冷戦の緩和と膨大な中東石油の発見によって計画は中止された。しかしながら、1973年のオイル・ショックによって、石油代替エネルギーの開発研究の必要性が世界的に認識され、とくにアメリカの開発研究を大幅に促進する結果となった。

 この間、一貫して石炭液化の経済性を改善するための努力がなされてきた。反応装置に関しては石油化学工業の発達と相まって、設計、材料、計装、自動制御のすべてを含む化学装置の面で格段の進歩を遂げたが、商業生産規模の面では1桁(けた)以上に拡大している。1日数万トンもの石炭を処理する商業規模の液化工場を実現するために、数十~数百トンのパイロット・プラントを使用した研究が続けられた。

 低温乾留法では、得られる液体収率が6~12%と低いのが欠点であったが、段階的に温度を上げていく多段乾留法や急速加熱法の開発によって、低温タールを完全に絞り出し、液体収率を25%に高めることに成功している。

 直接液化法は、石炭の微粉末に媒体油と触媒を均一に混合し、固液流体化された石炭スラリーを高温・高圧の水素雰囲気下(水素が共存する条件)で反応させる。すなわち、それぞれ性質の異なる固体(石炭、触媒)、液体(媒体油)、気体(水素)を同時にしかも高温・高圧下で反応させるもので、液体のみを反応させる石油精製技術に比べてはるかにむずかしい技術である。反応温度と圧力を可能な限り低下させて技術的な困難性と設備投資額を低減させるために、安価で活性の高い触媒の開発や、コバルト、モリブデンなど高価な触媒の効率的な使用法の開発、石炭の化学構造に立脚した合理的な液化反応の進め方、そして活性な水素を供与できるような媒体油の使用など、種々の改良が進められた。

 間接液化法は、石炭をいったんガス化し再度液状炭化水素を合成するために、直接液化法と比較して技術的に容易であるにもかかわらず、おもに熱効率が低いという理由で大きな開発計画は進められなかった。ただ、非常に安価な石炭を産出し、国際的に孤立した政治条件下にあった南アフリカ共和国においてのみ工業化が可能となり、1955年にSASOL(サソール)社のCTL(coal to liquids=合成液体燃料)がサソルバーグで生産開始された。その後のオイル・ショックが刺激となって、1976年にはセクンダに第二工場の建設を開始するなど生産拡大が進められ、1982年以降、1日当り合成燃料の生産規模は17.5万バレルになった。

 西ドイツはオイル・ショック以降、アメリカに次いで直接液化に力を入れ、1981年にエッセン郊外のボットロップに1日の石炭処理量が200トンのパイロット・プラントを完成するなど、新ドイツ法の開発研究を推進した。そのほかオーストラリア、イギリス、フランス、カナダ、中国などが直接液化に熱心であった。

 中国では内モンゴル自治区に1日の石炭処理量が6000トン規模の直接液化実証設備が建設(2004~2008年)され、2009年1月に300時間稼動したとの報道があった。その後の詳細な稼動状況は確認されていないが、ともかく中国は世界で唯一石炭の直接液化技術を商業化した国になった。

[上田 成・荒牧寿弘]

日本における現状

日本でも大学、国立研究所、民間で基礎的な研究が続けられていたが、1950年代以降、石炭にとってかわった石油全盛の時代となった。しかし、液化技術が完全に消滅する寸前にオイル・ショックが到来し、1974年(昭和49)に工業技術院(現、産業技術総合研究所)において発足したサンシャイン計画の一環として積極的に研究が推進された。さらに1980年には工業化研究を促進するため新エネルギー総合開発機構(現、新エネルギー・産業技術総合開発機構。略称NEDO(ネド))が設立され、オーストラリア政府の協力のもとにビクトリア州の褐炭を利用する1日の褐炭処理量が50トンのパイロット・プラントがラトローブ・バリーに建設された。さらに1983年からは1日の瀝青炭(れきせいたん)処理量が250トンのパイロット・プラント建設計画も進められたが、150トン規模に縮小されて茨城県鹿嶋(かしま)市に建設された。

 石炭液化は第二次世界大戦後の技術開発の流れのなかで、液体燃料のみでなく、石油化学に対抗して化学原料(ケミカルス)の製造法としても着目されてきた。石炭の構造特性を生かして、フェノール、ナフタレン、ピリジンなどの芳香族有機薬品を液化油から分離精製しようとするもので、石炭化学の大きな柱となる可能性を有しており、石炭液化のコストを低減させると同時に、化学技術者の夢にかなった有効な利用法であるといえる。

 石炭液化技術開発は技術的にむずかしく、長い期間と膨大な資金を必要とするので、産学官および企業間の協力、さらに国際的な協力によって推し進められてきた。1984年にはそのための新会社、日本コールオイルが設立され、150トン規模パイロット・プラントの運転研究を通じて連続安定操業とスケールアップのためのプロセス設計データを取得するなど、大きな成果を残した。とはいえ、将来の工業化に対しては種々の残された技術的課題の解決を図らねばならず、またそれはエネルギー安定供給の必要性、政策的な判断に左右されると考えられる。

[上田 成・荒牧寿弘]

『木村英雄・藤井修治著『石炭化学と工業』(1977/増補版・1984・三共出版)』『真田雄三編著『石炭転換利用技術――石炭液化、液化油の組成構造と物性推算』(1994・アイピーシー)』

[参照項目] | オイル・ショック | 人造石油 | 石炭 | 石炭ガス化
ビクトリア褐炭二段水添液化工程図
©Shogakukan">

ビクトリア褐炭二段水添液化工程図

瀝青炭液化パイロット・プラントのフローダイヤグラム
©Shogakukan">

瀝青炭液化パイロット・プラントのフロー…


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Coal chemistry - sekitankagaku (English spelling) coal chemistry

>>:  Coal - Sekitan (English spelling)

Recommend

Bucket tying master - Okeyuishi

…A craftsman who makes barrels. He was also calle...

Tatsuta [village] - Tatsuta

A village in Ama County, on the western edge of Ai...

Iri - Iri

In some cases, the Ainu practice matrimonial or m...

Steward - Flatfish

〘Noun〙① Under the Ritsuryo system, an official was...

Xyris indica (English spelling)

… [Mitsuru Hotta]... *Some of the terminology tha...

Amaltheia - Amaltheia (English spelling)

In Greek mythology, Amalthea is a female goat or ...

After-shaving powder

...Those with distinctive fragrances are called p...

puhru

… [The meaning and significance of the term "...

"War of the Worlds" (film)

...On the other hand, in Hollywood, the first sci...

Horse riding license - Bajomen

Land in manors and kokugaryo that was exempt from ...

York (person's name) (English spelling)

…The 48-member expedition left St. Louis in May 1...

Fernandina

…It was built in 1575 by the Spanish as a garriso...

Slow filtration - Kansokuroka

… [Purification of river and lake water] It is po...

Fluorescence

This is the light that is emitted from a substanc...

Ikeda Shounyu

...A military commander in the Azuchi-Momoyama pe...