A finite set A with n elements can be expressed as { a 0 , a 1 ,……, a n -1 } by numbering its elements. This means that there is exactly one corresponding element in set A to the set of natural numbers less than n , {0, 1,……, n -1}, including the arrangement (order). The ordinal number of these sets is said to be n . The ordinal number of the empty set is defined as 0. An ordinal number thus gives a type of order to a set when its elements are numbered in a certain order, and this concept has been extended to infinite sets. The set of all natural numbers {0, 1, 2, …} does not have a maximum element in the order of magnitude. The ordinal of this set is denoted as ω, and is called the smallest infinite ordinal. For each natural number n , n < ω. The ordinals greater than ω are: [Toshio Nishimura] Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
n個の元をもつ有限集合Aは、その元に番号をつけて、{a0, a1,……, an-1}と表すことができる。これは、集合Aの元と、nより小さい自然数の集合{0, 1,……, n-1}との間に、並べ方(順序)を含めて互いの元がちょうど一つずつ対応するようにしたものである。これらの集合の順序数はnであるという。空集合の順序数は0と定める。順序数とはこのように、集合の元に一定の順序で番号づけを与えたときの、その集合の順序の型を与えるもので、この概念を無限集合にまで広げたものである。 自然数全体の集合{0, 1, 2,……}は、大小の順序で最大元がない。この集合の順序数をωと表し、最小の無限順序数といい、各自然数nに対してn<ωとする。ωより大きい順序数として、 [西村敏男] 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
Born November 30, 1874 in Clifton, Canada [Died] A...
It is a perennial grass of the Poaceae family that...
[1] [noun] To return to one's hometown to chec...
A large steel company in China. It was the predec...
Born: February 19, 1856 in Alsfeld [Died] April 25...
[raw]? [Died] 915 A Muslim scholar of hadith (trad...
A type of seedbed that is artificially heated to ...
Born: July 18, 1918, Umtata, South Africa [Died] D...
The ancient name of the eastern Mediterranean coa...
...A trust for the purpose of religious rites, re...
A sulfide mineral found in low to high temperatur...
... In 1967, 1968, and 1969, rice production reac...
Dutch landscape painter. Born and died in Amsterd...
A Southwestern barbarian nation founded in the sou...
...Such endurance sports, as typified by seal-pok...