A wavy shape in the bedding planes or foliation (schistosity, cleavage, etc.) of a rock formation. The most common type of fold is the wavy shape of the bedding planes of sedimentary rocks. The size of the wavy shape, measured in wavelengths, can range from a micrometer to tens of kilometers. [Yoshida Shizuo and Murata Akihiro, February 17, 2016] Cause of foldingThe causes of folded structures include (1) tectonic forces and (2) to (4) gravitational forces, as described below. (1) Compressive forces (tectonic forces) acting on the crust cause the strata to shorten and fold (such as folded mountains). (2) Once horizontally deposited strata have begun to solidify sufficiently, they undergo a submarine landslide and are folded (slump folds). (3) The pore water pressure of the sand layer sandwiched between two impermeable mud layers is often abnormally high due to the weight of the strata accumulated on top of it. When an earthquake or other event occurs, only the sand layer moves and flows, causing folding. This type of folding is called a convolution. (4) On steeply sloping mountain slopes, the rocks on the surface of the mountain slope (several meters to several hundred meters thick) move slowly toward the valley as weathering progresses, for example at a speed of several centimeters per thousand years (rock creep). During this process, slip occurs along bedding planes and schistosity planes, resulting in folds like the bending of stacked cards. [Yoshida Shizuo and Murata Akihiro, February 17, 2016] Tectonic foldingMany of the folds that develop in the folded mountains of orogenic belts are formed by tectonic forces. The tectonic forces that create folded mountains are caused by the collision of plates. The Alps, Himalayas, Japanese archipelago, Appalachian Mountains, and Andes are all plate collision zones. The formation mechanism and style of folds formed by tectonic forces vary depending on the ductility of the rocks, and the rocks may behave ductilely or brittlely. If the ductility is high, the rocks deform fluidly, and if it is low, they deform brittle and break. The ductility of rocks varies depending on physical conditions such as rock type, temperature, confining pressure (hydrostatic pressure), and strain rate. When layers of different ductility overlap (for example, alternating layers of sandstone and mudstone), the deformation behavior of each layer differs during folding, and slip occurs between the layers. In general, the higher the temperature and the slower the strain rate, the greater the ductility of the rocks, and they fold fluidly like starch syrup. In a single folded mountain range, these physical conditions are not uniform but vary considerably, so a wide variety of folds are formed in terms of style and scale. [Yoshida Shizuo and Murata Akihiro, February 17, 2016] Fold classificationFolds are classified based on criteria such as (1) the inclination of the fold axis, (2) the interwing angle, (3) cross-sectional morphology, (4) symmetry, and (5) folding mechanism, and the morphology of each fold is discussed. (1) The surface that joins the parts of the folds with the greatest curvature in each layer is called the fold axis, and they are classified according to their inclination. When the inclination of the axis is 90 degrees, it is called an upright fold, when the axis is inclined, it is called an inclined fold, when one of the layers is inverted, it is called an overturning fold, and when the axis is almost horizontal, it is called a recumbent fold. (2) The part of the fold where the curvature becomes gentler away from the axial plane is called the wing, and they are classified according to the angle between the wings. In general, if the angle between the wings is 70 degrees or more, it is called an open fold, if it is between 10 and 70 degrees, it is called a closed fold, and if it is close to 0 degrees, it is called an isoclinal fold. (3) When classified by the shape of the cross section perpendicular to the fold axis, if the thickness of the strata measured perpendicular to the bedding plane is the same everywhere in the fold, it is called a parallel fold, and if the thickness of the strata measured parallel to the fold axis is the same everywhere, it is called a similar fold. If the folded strata take the form of part of a circular arc, it is called a concentric fold, and if the wings are flat and the axis is pointed, it is called a kink fold. A kink fold in which both wings are the same length is called a chevron fold. (4) If both sides of the axial plane are symmetrical in a cross section perpendicular to the fold axis, it is called a symmetric fold, and if they are asymmetrical, it is called an asymmetric fold. (5) When classified by the mechanism of folding, folds that are compressed laterally are called buckling folds, and folds that are folded by force perpendicular to the strata are called transversal bending folds. Folds that are folded by sliding along a weak line parallel to the strata while relieving strain are called flexural-slip folds, folds that experience simple shear parallel to the strata are called flexural shear folds, and folds where the plane of simple shear intersects obliquely with the bedding plane are called oblique shear folds. [Yoshida Shizuo and Murata Akihiro, February 17, 2016] [References] | | | | | |©Shogakukan "> Examples of folding forms and styles Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
地層中の層理面や面構造(片理・劈開(へきかい)など)が波曲しているもの。もっとも普通にみられる褶曲は、堆積(たいせき)岩の層理面が波曲してできた褶曲である。波曲の大きさは、波長で測って、マイクロメートル大から10キロメートル大まである。 [吉田鎮男・村田明広 2016年2月17日] 褶曲の成因褶曲構造の成因には以下に述べるように、(1)の造構力によるものと、(2)~(4)の重力によるものとがある。 (1)地殻に働く圧縮力(造構力)によって地層が短縮し褶曲する(褶曲山脈など)。 (2)いったん水平に堆積した地層が、十分固結しないうちに海底地すべりをおこし、それに伴って褶曲する(スランプ褶曲)。 (3)不透水性の泥層と泥層との間に挟まれた砂層の間隙(かんげき)水圧は、その上に累積している地層の荷重によりしばしば異常に高くなる。このとき、地震動などがおこると砂層のみが動揺、流動して褶曲が生じる。このような褶曲をコンボリューションconvolutionとよぶ。 (4)急傾斜している山腹において、山腹表層の岩石(厚さ数メートルから数百メートル)は風化の進行に伴って谷の方向にゆっくりと、たとえば1000年につき数センチメートルといった速度で流動的に移動する(岩盤クリープ)。このとき、層理面や片理面に沿ってスリップをおこし、重ねたカードを曲げたような褶曲が生じる。 [吉田鎮男・村田明広 2016年2月17日] 造構力による褶曲造山帯の褶曲山脈などに発達している褶曲には、造構力によって形成されたものが多い。褶曲山脈をつくるような造構力は、プレートとプレートの衝突によって生じる。アルプス山脈、ヒマラヤ山脈、日本列島、アパラチア山脈、アンデス山脈などは、すべてプレートの衝突域である。 造構力によって形成される褶曲の形成メカニズムや褶曲様式は、岩石のダクティリティductility(延性度)によって異なり、地層が延性的に挙動したり、脆性(ぜいせい)的に挙動したりする。ダクティリティが大きければ、岩石は流動的に変形し、小さければもろく破断しつつ変形する。岩石のダクティリティは、岩種、温度、封圧(静水圧)、歪(ひずみ)速度などの物理条件によって変化する。ダクティリティの異なる地層が重なり合っている場合(たとえば砂岩と泥岩の互層)、褶曲に際してそれぞれの層の変形挙動が異なるため、層と層の間ですべりが生じる。一般に、温度が高くなるほど、また歪速度が遅くなるほど、岩石のダクティリティは大きくなり、水飴(みずあめ)のように流動的に褶曲するようになる。一つの褶曲山脈において、これらの物理条件は一様でなくかなり大きく変化するために、様式においてもスケールにおいても多種多様な褶曲が形成される。 [吉田鎮男・村田明広 2016年2月17日] 褶曲の分類褶曲は、(1)褶曲軸面の傾斜、(2)翼(よく)間角、(3)断面の形態、(4)対称性、(5)褶曲のメカニズム、などの基準で分類され、個々の褶曲の形態などが議論される。 (1)各地層の褶曲の曲率がもっとも大きい部分を連ねた面を褶曲軸面といい、この傾斜により分類される。軸面の傾斜が90度のときは正立褶曲、軸面が傾斜しているときは傾斜褶曲、片方の地層が逆転しているときは転倒褶曲、軸面がほとんど水平のときは横臥褶曲(おうがしゅうきょく)とよぶ。 (2)褶曲の軸面から離れた曲率の緩くなる部分を翼といい、両側の翼のなす角度で分類される。一般的に、両翼の角度が70度以上のときは開いた褶曲、10~70度のときは閉じた褶曲、0度に近いときは等斜褶曲とよぶ。 (3)褶曲軸に直交する断面の形態で分類される場合、層理面に直交して測った地層の厚さが褶曲のどの部分でも同じときは平行褶曲、褶曲軸面に平行に測った地層の厚さがどの部分でも同じときは相似褶曲とよぶ。また、褶曲した地層が円弧の一部の形態をとるときは同心褶曲、翼部が平面的で軸部がとがっているときはキンク褶曲とよぶ。キンク褶曲のうち、両翼の長さが等しいものはシェブロン褶曲とよぶ。 (4)褶曲軸に直交する断面で、軸面の両側が対称なら対称褶曲、非対称なら非対称褶曲とよぶ。 (5)褶曲のメカニズムにより分類される場合、地層の横方向から圧縮され褶曲したものはバックリング(座屈褶曲)buckling fold、地層と直交する方向から力が加わって褶曲したものはベンディング(横曲げ褶曲)transversal bending foldとよぶ。地層に平行な弱線部ですべることによって歪を解消しながら褶曲するのはフレクシュラルスリップ(曲げスリップ褶曲)flexural-slip fold、地層面に平行に単純剪断(せんだん)が生じるのはフレクシュラルシアー(曲げシアー褶曲)flexural shear fold、単純剪断の生じる面が層理面と斜交するのはオブリークシアー(斜めシアー褶曲)oblique shear foldとよばれている。 [吉田鎮男・村田明広 2016年2月17日] [参照項目] | | | | | |©Shogakukan"> 褶曲の形態・様式の例 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Collection of Jewel - Shugyokushu
>>: Religious corporation - shuukyouhojin
A marine fish belonging to the order Perciformes,...
A village in Minamiazumi County, western Nagano Pr...
A vascular murmur caused by an increase in blood f...
French playwright. Born in Paris. The greatest co...
Year of death: 27 April 775 (30 May 775) Year of b...
It is the opposite of literary language. It means...
… [Takeda Masatomo]. … *Some of the terminology t...
A Buddhist book from the Yuan Dynasty in China. S...
...It expresses a deep faith in the idea that eve...
...The Japanese name comes from the fact that it ...
…In the early days, Pierre Beauchamp (1636-1705) ...
...The name first appears in documents from the b...
A general term for animals belonging to the Tardig...
The process of keeping food and raw materials at l...
〘Noun〙 (abbreviation of "ata" (咫)) One o...