Periodic function

Japanese: 周期関数 - しゅうきかんすう(英語表記)periodic function
Periodic function

For a function f ( x ) defined over all real numbers, if there is a positive number p such that f ( x + p ) = f ( x ) for all x , then f ( x ) is said to be a periodic function with p as one period. When f ( x ) is a periodic function, there are many periods, but if f ( x ) is a non-constant function and is continuous at a certain point, there is a minimum number of periods, and the other periods are natural number multiples of this. This minimum period is called the fundamental period of f ( x ). Trigonometric functions are typical examples of periodic functions. The fundamental period of sin x and cos x is 2π. The fundamental period of tan x is π. General periodic functions can be expressed as Fourier series using sin and cos, under appropriate conditions.

Periodic functions can be defined similarly on the complex plane. For a non-constant function f ( z ), if there exists ω≠0 such that f ( z + ω) = f ( z ) for all z , then f ( z ) is said to be a periodic function with ω as one period. When f ( z ) is a periodic function, all of the periods of f ( z ) form a group under complex addition. If f ( z ) is continuous at a point, the following two cases occur: (1) there is a certain ω1 ≠0, and all of the periods are integer multiples of ω1 ; ( 2 ) there are certain ω1 and ω2, and the ratio of ω1 to ω2 is not a real number , and all of the periods can be expressed as n1ω1 + n2ω2 ( n1 and n2 are integers).

In the case of (1), it is said to be a singly periodic function. e z is a typical example, with 2π i as the fundamental period. In the case of (2), it is said to be a doubly periodic function. A meromorphic function with a doubly periodic function is called an elliptic function. This has been studied in great detail since the 19th century, and is an important topic in the theory of algebraic functions.

[Osamu Takenouchi]

[Reference] | Elliptic integrals | Fourier series

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

実数全体について定義された関数f(x)に対して、すべてのxについてf(xp)=f(x)を満たす正の数pがあるとき、f(x)はpを一つの周期にもつ周期関数であるという。f(x)が一つの周期関数であるとき、周期はたくさんあるが、f(x)が定数でない関数で、ある点で連続ならば、周期のうちに最小の数があり、他の周期はこれの自然数倍となる。この最小の周期をf(x)の基本周期という。周期関数の代表的なものは三角関数である。sinx, cosxは2πを基本周期とする。tanxの基本周期はπである。一般の周期関数は、適当な条件のもとで、フーリエ級数として、sin, cosを用いて表すことができる。

 複素平面上でも同様に、周期関数を定義することができる。定数でない関数f(z)に対して、すべてのzについて、f(z+ω)=f(z)を満たすω≠0があるとき、f(z)はωを一つの周期とする周期関数であるという。f(z)が一つの周期関数であるとき、f(z)の周期全体は、複素数の加法に関して群をつくる。f(z)がある点で連続ならば、次の二つの場合がおこる。(1)あるω1≠0があって、周期はすべてω1の整数倍になる。(2)あるω1、ω2があって、ω1、ω2の比は実数でなく、かつ周期はすべてn1ω1n2ω2n1n2は整数)と表すことができる。

 (1)の場合は単一周期関数であるという。ezはその代表的な例で、2πiを基本周期とする。(2)の場合は二重周期関数であるという。二重周期を有する有理形関数を楕円関数(だえんかんすう)という。これについては、19世紀以来、非常に詳しい研究がなされ、代数関数論のなかの重要な話題である。

[竹之内脩]

[参照項目] | 楕円積分 | フーリエ級数

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Periodic somnolence

>>:  House of Representatives - shugiin

Recommend

Competitive Exclusion Principle

...Volterra (1926) and AJ Lotka (1932) were the f...

Mantova (English spelling)

The capital of the province of Mantua in Lombardy...

Choirokoitia (English spelling)

...The situation became extremely complicated due...

Ave Maria (English spelling) Ave Maria [Latin]

(1) A prayer of the Catholic Church. It is called ...

Klabund - Club (English spelling)

German poet and novelist. His real name was Alfre...

Chingpaw

...One of the ethnic minorities who live mainly i...

Volans (Flying Fish)

Abbreviation Vol. A small constellation around the...

Vacuum balance

This is a device in which a balance is placed in a...

Imp

〘Noun〙① An ancient Chinese book on military strate...

Otago

…Fighting continued sporadically until 1872, with...

Earthquake fault - jishin danso

A fault that appears on the earth's surface a...

Shelduck (Tsukushima duck) - Shelduck (English spelling)

A bird of the Anatidae family (illustration). It b...

International Telecommunication Union (Kokusai Denkitsu Shinrengo)

ITU is a United Nations specialized agency in the...

Riemann surface - Riemann surface

Since multi-valued functions do not fit within the...

Seven Lucky Gods

A combination of seven gods worshipped as gods of...