For a function f ( x ) defined over all real numbers, if there is a positive number p such that f ( x + p ) = f ( x ) for all x , then f ( x ) is said to be a periodic function with p as one period. When f ( x ) is a periodic function, there are many periods, but if f ( x ) is a non-constant function and is continuous at a certain point, there is a minimum number of periods, and the other periods are natural number multiples of this. This minimum period is called the fundamental period of f ( x ). Trigonometric functions are typical examples of periodic functions. The fundamental period of sin x and cos x is 2π. The fundamental period of tan x is π. General periodic functions can be expressed as Fourier series using sin and cos, under appropriate conditions. Periodic functions can be defined similarly on the complex plane. For a non-constant function f ( z ), if there exists ω≠0 such that f ( z + ω) = f ( z ) for all z , then f ( z ) is said to be a periodic function with ω as one period. When f ( z ) is a periodic function, all of the periods of f ( z ) form a group under complex addition. If f ( z ) is continuous at a point, the following two cases occur: (1) there is a certain ω1 ≠0, and all of the periods are integer multiples of ω1 ; ( 2 ) there are certain ω1 and ω2, and the ratio of ω1 to ω2 is not a real number , and all of the periods can be expressed as n1ω1 + n2ω2 ( n1 and n2 are integers). In the case of (1), it is said to be a singly periodic function. e z is a typical example, with 2π i as the fundamental period. In the case of (2), it is said to be a doubly periodic function. A meromorphic function with a doubly periodic function is called an elliptic function. This has been studied in great detail since the 19th century, and is an important topic in the theory of algebraic functions. [Osamu Takenouchi] [Reference] | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
実数全体について定義された関数f(x)に対して、すべてのxについてf(x+p)=f(x)を満たす正の数pがあるとき、f(x)はpを一つの周期にもつ周期関数であるという。f(x)が一つの周期関数であるとき、周期はたくさんあるが、f(x)が定数でない関数で、ある点で連続ならば、周期のうちに最小の数があり、他の周期はこれの自然数倍となる。この最小の周期をf(x)の基本周期という。周期関数の代表的なものは三角関数である。sinx, cosxは2πを基本周期とする。tanxの基本周期はπである。一般の周期関数は、適当な条件のもとで、フーリエ級数として、sin, cosを用いて表すことができる。 複素平面上でも同様に、周期関数を定義することができる。定数でない関数f(z)に対して、すべてのzについて、f(z+ω)=f(z)を満たすω≠0があるとき、f(z)はωを一つの周期とする周期関数であるという。f(z)が一つの周期関数であるとき、f(z)の周期全体は、複素数の加法に関して群をつくる。f(z)がある点で連続ならば、次の二つの場合がおこる。(1)あるω1≠0があって、周期はすべてω1の整数倍になる。(2)あるω1、ω2があって、ω1、ω2の比は実数でなく、かつ周期はすべてn1ω1+n2ω2(n1、n2は整数)と表すことができる。 (1)の場合は単一周期関数であるという。ezはその代表的な例で、2πiを基本周期とする。(2)の場合は二重周期関数であるという。二重周期を有する有理形関数を楕円関数(だえんかんすう)という。これについては、19世紀以来、非常に詳しい研究がなされ、代数関数論のなかの重要な話題である。 [竹之内脩] [参照項目] | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
>>: House of Representatives - shugiin
...Volterra (1926) and AJ Lotka (1932) were the f...
The capital of the province of Mantua in Lombardy...
...The situation became extremely complicated due...
(1) A prayer of the Catholic Church. It is called ...
German poet and novelist. His real name was Alfre...
...One of the ethnic minorities who live mainly i...
Abbreviation Vol. A small constellation around the...
This is a device in which a balance is placed in a...
〘Noun〙① An ancient Chinese book on military strate...
…Fighting continued sporadically until 1872, with...
A fault that appears on the earth's surface a...
A bird of the Anatidae family (illustration). It b...
ITU is a United Nations specialized agency in the...
Since multi-valued functions do not fit within the...
A combination of seven gods worshipped as gods of...