Periodic function

Japanese: 周期関数 - しゅうきかんすう(英語表記)periodic function
Periodic function

For a function f ( x ) defined over all real numbers, if there is a positive number p such that f ( x + p ) = f ( x ) for all x , then f ( x ) is said to be a periodic function with p as one period. When f ( x ) is a periodic function, there are many periods, but if f ( x ) is a non-constant function and is continuous at a certain point, there is a minimum number of periods, and the other periods are natural number multiples of this. This minimum period is called the fundamental period of f ( x ). Trigonometric functions are typical examples of periodic functions. The fundamental period of sin x and cos x is 2π. The fundamental period of tan x is π. General periodic functions can be expressed as Fourier series using sin and cos, under appropriate conditions.

Periodic functions can be defined similarly on the complex plane. For a non-constant function f ( z ), if there exists ω≠0 such that f ( z + ω) = f ( z ) for all z , then f ( z ) is said to be a periodic function with ω as one period. When f ( z ) is a periodic function, all of the periods of f ( z ) form a group under complex addition. If f ( z ) is continuous at a point, the following two cases occur: (1) there is a certain ω1 ≠0, and all of the periods are integer multiples of ω1 ; ( 2 ) there are certain ω1 and ω2, and the ratio of ω1 to ω2 is not a real number , and all of the periods can be expressed as n1ω1 + n2ω2 ( n1 and n2 are integers).

In the case of (1), it is said to be a singly periodic function. e z is a typical example, with 2π i as the fundamental period. In the case of (2), it is said to be a doubly periodic function. A meromorphic function with a doubly periodic function is called an elliptic function. This has been studied in great detail since the 19th century, and is an important topic in the theory of algebraic functions.

[Osamu Takenouchi]

[Reference] | Elliptic integrals | Fourier series

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

実数全体について定義された関数f(x)に対して、すべてのxについてf(xp)=f(x)を満たす正の数pがあるとき、f(x)はpを一つの周期にもつ周期関数であるという。f(x)が一つの周期関数であるとき、周期はたくさんあるが、f(x)が定数でない関数で、ある点で連続ならば、周期のうちに最小の数があり、他の周期はこれの自然数倍となる。この最小の周期をf(x)の基本周期という。周期関数の代表的なものは三角関数である。sinx, cosxは2πを基本周期とする。tanxの基本周期はπである。一般の周期関数は、適当な条件のもとで、フーリエ級数として、sin, cosを用いて表すことができる。

 複素平面上でも同様に、周期関数を定義することができる。定数でない関数f(z)に対して、すべてのzについて、f(z+ω)=f(z)を満たすω≠0があるとき、f(z)はωを一つの周期とする周期関数であるという。f(z)が一つの周期関数であるとき、f(z)の周期全体は、複素数の加法に関して群をつくる。f(z)がある点で連続ならば、次の二つの場合がおこる。(1)あるω1≠0があって、周期はすべてω1の整数倍になる。(2)あるω1、ω2があって、ω1、ω2の比は実数でなく、かつ周期はすべてn1ω1n2ω2n1n2は整数)と表すことができる。

 (1)の場合は単一周期関数であるという。ezはその代表的な例で、2πiを基本周期とする。(2)の場合は二重周期関数であるという。二重周期を有する有理形関数を楕円関数(だえんかんすう)という。これについては、19世紀以来、非常に詳しい研究がなされ、代数関数論のなかの重要な話題である。

[竹之内脩]

[参照項目] | 楕円積分 | フーリエ級数

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Periodic somnolence

>>:  House of Representatives - shugiin

Recommend

"Yesterday, today, tomorrow" - Yesterday, today, tomorrow

…He entered the film industry in 1927 and became ...

Asconoid type - Ascon type

One of the three basic types of tissue structure (...

Isle of Man - Man

An island in the Irish Sea, halfway between Great ...

Maximilla

...His background is unclear, but he was probably...

STL - STL

《 Standard Template Library 》A library that comes ...

Morning glory - Morning glory

…An annual herb of the Convolvulaceae family nati...

Pterocarpus santalinus (English spelling) Pterocarpussantalinus

…The genus name Pterocarpus is sometimes used to ...

Capuchin superfamily - Capuchin superfamily

…the name is a general term for the New World mon...

Azores - Azores

Azores is a Portuguese archipelago in the North A...

Offa's Fortress - Offa's Fortress

…East Anglia rose to power for a time in the firs...

Daicho - Daicho

1771-1856 A carpenter and gangster from the late ...

Pteropus dasymallus formosus (English spelling) Pteropusdasymallusformosus

…[Yoshiyuki Mizuko]. . . *Some of the terminology...

Nishie - Success

The name of the main stream of the Pearl River sy...

"The Ainu People and Their Tales" - Ainujin sono setsuwa

…He also established the Batchelor School and con...

Tadanari Okamoto

1932-1990 An animation creator from the late Show...