In a broad sense, it refers to a technique for dealing with the rate of change of a function expressed in the form of a table (called a table function), and in a narrow sense, it refers to a method of solving differential equations by approximating them with difference equations. [Hayato Togawa] Difference The relationship between variables x and y is expressed as x 1 x 2 …… x n [Hayato Togawa] Strictly Differential Method The difference method is a type of approximate solution method for differential equations. It is used for boundary value problems of ordinary and partial differential equations. Its principle is simple and it can be applied to almost any form of equation. However, since it requires a large number of calculations, practical calculations cannot be performed without using a computer. Its principle is to create a difference equation that approximates the differential equation and then solve it. The easiest way to create an approximate difference equation is to replace the differential quotient contained in the differential equation with the approximate difference quotient. For example, the differential equation [Hayato Togawa] Mathematical basis of the finite difference methodUsing the techniques of functional analysis, the basic theory of finite difference methods has been studied, and the convergence of many formulas (convergence to an exact solution when the division is made infinitesimally fine) has been proven. [Hayato Togawa] "Numerical Computation" by Akasaka Takashi (1967, Corona Publishing)" ▽ "Approximate Solutions of Partial Differential Equations by Finite Difference Methods, Volumes 1 and 2, by Forsyth and Wasow, translated by Fujino Seiichi (1968, Yoshioka Shoten)" ▽ "Numerical Analysis and Simulation" by Togawa Hayato (1976, Kyoritsu Shuppan)" ▽ "Finite Difference Methods" by Takahashi Ryoichi and Tanamachi Yoshihiro (1991, Baifukan Publishing)" ▽ "Introduction to Numerical Analysis" by Yamamoto Tetsuro, revised edition (2003, Science Publishing)" [Reference items] | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
広い意味では、数表の形で表された関数(表関数という)の変化率を扱う技法をいい、狭い意味では、微分方程式を差分方程式で近似して解く方法をいう。 [戸川隼人] 差分(階差)変数xと変数yの関係を [戸川隼人] 狭義の差分法微分方程式の近似解法の一種としての差分法がある。これは、常微分方程式および偏微分方程式の境界値問題に用いられる。原理が単純で、どんな形の方程式にもたいてい適用できることが特徴である。そのかわり、必要演算回数が多いので、コンピュータを使わないと実用的計算はできない。その原理は、微分方程式を近似する差分方程式をつくって、それを解くという方法による。近似差分方程式をつくるには、微分方程式に含まれる微分商を、その近似差分商で置き換えるのがもっとも簡単である。たとえば、微分方程式 [戸川隼人] 差分法の数学的根拠関数解析学の手法により、差分法の基礎理論が研究され、多くの公式について、その収束性(分割を無限に細かくするとき厳密解に収束すること)が証明されている。 [戸川隼人] 『赤坂隆著『数値計算』(1967・コロナ社)』▽『フォーサイス、ワソー著、藤野精一訳『偏微分方程式の差分法による近似解法』上下(1968・吉岡書店)』▽『戸川隼人著『数値解析とシミュレーション』(1976・共立出版)』▽『高橋亮一・棚町芳弘著『差分法』(1991・培風館)』▽『山本哲朗著『数値解析入門』増訂版(2003・サイエンス社)』 [参照項目] | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
A republic within the Russian Federation. Before t...
…These species were developed and improved long a...
... The origin of weaving seems to date back to t...
A genus of the Apocynaceae family (APG classifica...
Fish meat is steamed, pressed, dried and powdered...
… In addition to this, there is also a classifica...
…This traditional training method is also widely ...
An old town in Soo District, eastern Kagoshima Pre...
〘Noun〙 A book on military science. A book on milit...
… An adhesive is a substance that is placed betwe...
A facility for removing fission products from spen...
Founded in 1895 in Montmartre, Paris, this theater...
…Even if the scale of the construction project or...
Folk dance and song from northern Spain. The Arago...
...That is, it refers to a group of animals that ...