Finite difference method

Japanese: 差分法 - さぶんほう(英語表記)finite difference method
Finite difference method

In a broad sense, it refers to a technique for dealing with the rate of change of a function expressed in the form of a table (called a table function), and in a narrow sense, it refers to a method of solving differential equations by approximating them with difference equations.

[Hayato Togawa]

Difference

The relationship between variables x and y is expressed as x 1 x 2 …… x n
y1 y2 …… yn
(i.e., the value corresponding to x i is y i ) Δ x ix i +1x i
Δ y iy i +1y i
is called the (first-order) forward difference (a difference is also called a step difference or a definite difference), and its ratio Δ y i / Δ x i
is called the (first-order) forward difference quotient. Also, x ix ix i -1
yi yi yi -1
is called the (first-order) backward difference, and the ratio y i / x i
is called the (first-order) backward difference quotient. If x i is equally spaced, then x i +1x ih
( i = 1, 2, ..., n - 1)
in the case of,
δ y ix i =( x i +1x i −1 )/2 h
is called the (first-order) central difference quotient. Higher-order differences are Δ k y iΔ k -1 y i +1Δ k -1 y i
k y i = k −1 y ik −1 y i −1
The higher-order difference quotient is ( Δ k y / Δ k x ) iΔ k y / h k if x i is equally spaced.
( ky / kx ) i = ky / hk
However, in the case of unequal intervals,

We use the divided difference defined as follows. The difference quotient and the difference quotient are equivalent to the differential quotient in differential calculus, and can be used to discuss the rate of change and to perform interpolation, approximation, integration, etc.

[Hayato Togawa]

Strictly Differential Method

The difference method is a type of approximate solution method for differential equations. It is used for boundary value problems of ordinary and partial differential equations. Its principle is simple and it can be applied to almost any form of equation. However, since it requires a large number of calculations, practical calculations cannot be performed without using a computer. Its principle is to create a difference equation that approximates the differential equation and then solve it. The easiest way to create an approximate difference equation is to replace the differential quotient contained in the differential equation with the approximate difference quotient. For example, the differential equation

In this case, the first and second terms on the left side are

If we replace it with

However, this method does not always produce good results, so careful consideration is required depending on the problem. If you divide the section in question into small, equal parts to set up subdivisions, create the above-mentioned difference equations at each subdivision, set them simultaneously, and solve them by adding boundary conditions, you can obtain an approximate solution to the above-mentioned differential equation.

[Hayato Togawa]

Mathematical basis of the finite difference method

Using the techniques of functional analysis, the basic theory of finite difference methods has been studied, and the convergence of many formulas (convergence to an exact solution when the division is made infinitesimally fine) has been proven.

[Hayato Togawa]

"Numerical Computation" by Akasaka Takashi (1967, Corona Publishing)""Approximate Solutions of Partial Differential Equations by Finite Difference Methods, Volumes 1 and 2, by Forsyth and Wasow, translated by Fujino Seiichi (1968, Yoshioka Shoten)""Numerical Analysis and Simulation" by Togawa Hayato (1976, Kyoritsu Shuppan)""Finite Difference Methods" by Takahashi Ryoichi and Tanamachi Yoshihiro (1991, Baifukan Publishing)""Introduction to Numerical Analysis" by Yamamoto Tetsuro, revised edition (2003, Science Publishing)"

[Reference items] | Difference equation | Differential equation

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

広い意味では、数表の形で表された関数(表関数という)の変化率を扱う技法をいい、狭い意味では、微分方程式を差分方程式で近似して解く方法をいう。

[戸川隼人]

差分(階差)

変数xと変数yの関係を
  x1 x2 …… xn
  y1 y2 …… yn
とする(すなわち、xiに対応する値がyi)とき
  Δxixi+1xi
  Δyiyi+1yi
を(一階の)前方差分(差分は、階差または定差ともいう)といい、その比
  Δyi/Δxi
を(一階の)前方差分商という。また
  xixixi-1
  yiyiyi-1
を(一階の)後方差分といい、その比
  yi/xi
を(一階の)後方差分商という。xiが等間隔
  xi+1xih
    (i=1,2,……,n-1)
の場合、
  δyixi=(xi+1xi-1)/2h
を(一階の)中央差分商という。高階の差分は
  ΔkyiΔk-1yi+1Δk-1yi
  kyik-1yik-1yi-1
によって定義する。高階の差分商は、xiが等間隔ならば
  (Δky/Δkx)iΔky/hk
  (ky/kx)iky/hk
とするが、不等間隔の場合には、

で定義される差商divided differenceというものを用いる。差分商および差商は、微分法における微分商に相当するもので、これを用いて、変化率を論じたり、補間、近似、積分などを行うことができる。

[戸川隼人]

狭義の差分法

微分方程式の近似解法の一種としての差分法がある。これは、常微分方程式および偏微分方程式の境界値問題に用いられる。原理が単純で、どんな形の方程式にもたいてい適用できることが特徴である。そのかわり、必要演算回数が多いので、コンピュータを使わないと実用的計算はできない。その原理は、微分方程式を近似する差分方程式をつくって、それを解くという方法による。近似差分方程式をつくるには、微分方程式に含まれる微分商を、その近似差分商で置き換えるのがもっとも簡単である。たとえば、微分方程式

の場合、左辺第1項、第2項をそれぞれ

で置き換えれば

となる。ただし、このような方法がつねによい結果をもたらすとは限らないので、問題によっては慎重な考察を要する。問題とする区間を細かく等分して分点を設け、各分点において前出の差分方程式をつくり連立させ、境界条件を付加して解けば、前出の微分方程式の近似解が求められる。

[戸川隼人]

差分法の数学的根拠

関数解析学の手法により、差分法の基礎理論が研究され、多くの公式について、その収束性(分割を無限に細かくするとき厳密解に収束すること)が証明されている。

[戸川隼人]

『赤坂隆著『数値計算』(1967・コロナ社)』『フォーサイス、ワソー著、藤野精一訳『偏微分方程式の差分法による近似解法』上下(1968・吉岡書店)』『戸川隼人著『数値解析とシミュレーション』(1976・共立出版)』『高橋亮一・棚町芳弘著『差分法』(1991・培風館)』『山本哲朗著『数値解析入門』増訂版(2003・サイエンス社)』

[参照項目] | 差分方程式 | 微分方程式

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Difference equation

>>:  Safrole

Recommend

Republic of Mordovia (English spelling)

A republic within the Russian Federation. Before t...

Spiegel Karpfen (English spelling)

…These species were developed and improved long a...

Gumble Cave - Gumble Cave

... The origin of weaving seems to date back to t...

Strophanthus - Strophanthus

A genus of the Apocynaceae family (APG classifica...

Fish meal - Fish meal

Fish meat is steamed, pressed, dried and powdered...

euryphagous

… In addition to this, there is also a classifica...

Cold training - Kanshugyo

…This traditional training method is also widely ...

Shibushi [town] - Shibushi

An old town in Soo District, eastern Kagoshima Pre...

Military book - Heisho

〘Noun〙 A book on military science. A book on milit...

cohesive failure

… An adhesive is a substance that is placed betwe...

Nuclear fuel reprocessing plant (English spelling)

A facility for removing fission products from spen...

Grand Guignol

Founded in 1895 in Montmartre, Paris, this theater...

Master Carpenter - Ondaiku

…Even if the scale of the construction project or...

Jota (English spelling)

Folk dance and song from northern Spain. The Arago...

Parasitology - Helminthology

...That is, it refers to a group of animals that ...