Difference equation

Japanese: 差分方程式 - さぶんほうていしき(英語表記)difference equation
Difference equation

When a relationship between differences is given, the problem of finding a function (or table function) that satisfies it is called a differential equation, or constant difference equation, and the order of the highest difference contained in the equation is called the order of the differential equation.

[Hayato Togawa]

Numerical solution

If you substitute the definition of the difference into the difference equation, you will get a simultaneous equation with the value of the table function as the unknown, so if you add the same number of conditions (initial conditions, boundary conditions, etc.) as the order, you can solve it numerically. For example,
Δy =y , y11
In this case, the function value is written as y i +1y iy i
Therefore, starting from the initial condition y 1 = 1, y i + 1 = 2 y i
By calculating in order, the following solution is obtained.

y 2 = 2, y 3 = 4, y 4 = 8, y 5 = 16
In calculating differential equations, a system of simultaneous equations with a large number of unknowns must be solved. However, each equation is relatively simple, and the number of unknowns in each equation is small. For this reason, iterative methods (successive approximation methods) are advantageous, and various ingenious calculation techniques have been developed.

[Hayato Togawa]

Analytical Methods

Difference equations have properties very similar to differential equations, so depending on their form, it is possible to find a general solution using analytical methods.

[Hayato Togawa]

Applications to economics

In economics, differential equations are often used to clarify the time relationships and fluctuation processes of economic quantities. The simplest application is shown below.

Let the demand, supply, and price in period t be Dt , St , and Pt, respectively, and let the supply and demand function be given in the following form:

Dt = a - bPt ( a and b are positive constants)
S t = -α + β P t -1 (α and β are positive constants)
In other words, the demand quantity depends on the price of the current period, and the supply quantity depends on the price of the previous period. In this case, the following equation is obtained from the supply and demand equilibrium.


P0 is the initial value of Pt , and P * is the equilibrium value. If b > β, the price will fluctuate and converge to P * , and if b < β, it will diverge. When b = β, the price will repeat a constant fluctuation and will neither converge nor diverge. This is known as the spider web theory, and is an application of a first-order difference equation. An example of a second-order difference equation is the Samuelson-type multiplier-acceleration model. If national income Yt consists of consumption Ct and investment It for the same period, Ct is the previous period's income, and It depends on the difference in consumption between the current period and the previous period, then
Yt = Ct + It
Ct = αYt - 1 + c
(α is a constant between 0 and 1.
c is a positive constant)
I t =β( C tC t -1 )
(β is a positive constant)
This leads to the following second-order difference equation:

Y t +2 -α(1+β) Y t +1 +αβ Y t = c
Examination of the solution to this equation (especially the complex solution) provides one explanation for why business cycles occur.

[Yuichiro Otsuka]

"Numerical Calculation of Differential Equations - Finite Element Method and Difference Method" by Hayato Togawa (1973, Ohmsha)""Reprint of "Differential and Differential Equations" by Shohei Sugiyama (1999, Kyoritsu Shuppan)""Lectures on Difference Equations" by Ryogo Hirota (2000, Science-sha)"

[References] | Spider web theory | Differential method | Samuelson

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

差分についての関係式が与えられたとき、それを満たす関数(または表関数)を求める問題を差分方程式、または定差方程式といい、式に含まれる最高階の差分の階数を、差分方程式の階数という。

[戸川隼人]

数値的解法

差分方程式に差分の定義式を代入すれば、表関数の値を未知数とする連立方程式になるから、階数と同じ個数の条件(初期条件、境界条件など)を付加すれば、数値的に解くことができる。たとえば、
  Δyy, y1=1
の場合、関数値の形で書けば
  yi+1yiyi
であるから、初期条件y1=1から出発して
  yi+1=2yi
により順に計算すれば、次の解が得られる。

  y2=2, y3=4, y4=8, y5=16
 差分方程式の計算においては、未知数の非常に多い連立方程式を解かなければならない。しかし個々の式は比較的簡単で、一つの式に現れる未知数の個数は少ない。そのため反復法(逐次近似法)が有利であり、巧妙な計算技法がいろいろ開発されている。

[戸川隼人]

解析的方法

差分方程式は微分方程式とよく似た性質があるので、形によっては、解析的方法によって一般解を求めることができる。

[戸川隼人]

経済学への応用

経済学では、経済諸量の時間的な前後関係や変動過程を明らかにするために、しばしば差分方程式体系が利用される。以下にもっとも簡単な応用例を示す。

 いまt期の需要量、供給量、価格をそれぞれDtStPtと置くとき、需給関数が次の形で与えられるものとしよう。

  DtabPt (a,bは正の定数)
  St=-α+βPt-1 (α,βは正の定数)
すなわち、需要量は今期の価格に、供給量は前期の価格に依存するものと考えるのである。このとき、需給均等から次式が得られる。


P0Ptの初期値、P*は均衡値である。もしもb>βであれば、価格は変動しながらP*に収束し、b<βであれば発散する。b=βのときは、価格は一定の変動を繰り返し収束も発散もしない。これはくもの巣理論とよばれるもので、一階差分方程式の応用例である。二階差分方程式の例は、サミュエルソン型の乗数‐加速度モデルに代表される。国民所得Ytは同期の消費Ctと投資Itからなり、Ctは前期の所得、Itは今期と前期の消費差に依存するものとすれば、
  YtCtIt
  Ct=αYt-1c
   (αは0<α<1の定数,
    cは正の定数)
  It=β(CtCt-1)
   (βは正の定数)
となり、次の二階差分方程式が導かれる。

  Yt+2-α(1+β)Yt+1+αβYtc
この式の解(とくに複素数解)の検討から、なぜ景気循環が発生するかという問いへの一つの説明が可能となる。

[大塚勇一郎]

『戸川隼人著『微分方程式の数値計算――有限要素法と差分法』(1973・オーム社)』『杉山昌平著『差分・微分方程式』復刻版(1999・共立出版)』『広田良吾著『差分方程式講義』(2000・サイエンス社)』

[参照項目] | くもの巣理論 | 差分法 | サミュエルソン

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Sahei

>>:  Finite difference method

Recommend

Ionization isomerism

This isomerism occurs when salts or complex salts...

Workers' Friendship Association (English: Arbeiterverbrüderung)

The first nationwide workers' organization in ...

Potassium polysulfide

...It dissolves keratin and is used as a treatmen...

Kishichosen

An ancient Korean dynasty. Together with Wiman Jo...

Silk floss - Mawata

It is made by stretching waste cocoons flat and m...

Hijacking

... refers to the act of illegally seizing an air...

Kaoru Maruyama

Poet. Born in Oita City on June 8, 1899. He moved...

Quantum chemistry - Ryoushikagak (English spelling) quantum chemistry

A branch of chemistry that understands chemical p...

Clove (clove) - Clove (English spelling)

An evergreen tall tree of the Myrtaceae family (il...

Podiceps grisegena; red-necked grebe

Grebes, Petunia family. Total length 40-56cm. Ther...

Tarami [town] - Tarami

A former town in Nishisonogi County in the souther...

Wayang orang (English spelling)

…Wayang goreh in Western Java is still popular to...

Umbilix - Umbilix

…One of the reasons why the Delphic oracle had ab...

School attendance - Shuugaku

〘 noun 〙① To study under a teacher. [Northern Hist...

Onitachibana - Onitachibana

…An evergreen tree of the Rutaceae family, it is ...