When a relationship between differences is given, the problem of finding a function (or table function) that satisfies it is called a differential equation, or constant difference equation, and the order of the highest difference contained in the equation is called the order of the differential equation. [Hayato Togawa] Numerical solution If you substitute the definition of the difference into the difference equation, you will get a simultaneous equation with the value of the table function as the unknown, so if you add the same number of conditions (initial conditions, boundary conditions, etc.) as the order, you can solve it numerically. For example, y 2 = 2, y 3 = 4, y 4 = 8, y 5 = 16 [Hayato Togawa] Analytical MethodsDifference equations have properties very similar to differential equations, so depending on their form, it is possible to find a general solution using analytical methods. [Hayato Togawa] Applications to economicsIn economics, differential equations are often used to clarify the time relationships and fluctuation processes of economic quantities. The simplest application is shown below. Let the demand, supply, and price in period t be Dt , St , and Pt, respectively, and let the supply and demand function be given in the following form: Dt = a - bPt ( a and b are positive constants)
Y t +2 -α(1+β) Y t +1 +αβ Y t = c [Yuichiro Otsuka] "Numerical Calculation of Differential Equations - Finite Element Method and Difference Method" by Hayato Togawa (1973, Ohmsha)" ▽ "Reprint of "Differential and Differential Equations" by Shohei Sugiyama (1999, Kyoritsu Shuppan)" ▽ "Lectures on Difference Equations" by Ryogo Hirota (2000, Science-sha)" [References] | | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
差分についての関係式が与えられたとき、それを満たす関数(または表関数)を求める問題を差分方程式、または定差方程式といい、式に含まれる最高階の差分の階数を、差分方程式の階数という。 [戸川隼人] 数値的解法差分方程式に差分の定義式を代入すれば、表関数の値を未知数とする連立方程式になるから、階数と同じ個数の条件(初期条件、境界条件など)を付加すれば、数値的に解くことができる。たとえば、 y2=2, y3=4, y4=8, y5=16 [戸川隼人] 解析的方法差分方程式は微分方程式とよく似た性質があるので、形によっては、解析的方法によって一般解を求めることができる。 [戸川隼人] 経済学への応用経済学では、経済諸量の時間的な前後関係や変動過程を明らかにするために、しばしば差分方程式体系が利用される。以下にもっとも簡単な応用例を示す。 いまt期の需要量、供給量、価格をそれぞれDt、St、Ptと置くとき、需給関数が次の形で与えられるものとしよう。 Dt=a-bPt (a,bは正の定数)
Yt+2-α(1+β)Yt+1+αβYt=c [大塚勇一郎] 『戸川隼人著『微分方程式の数値計算――有限要素法と差分法』(1973・オーム社)』▽『杉山昌平著『差分・微分方程式』復刻版(1999・共立出版)』▽『広田良吾著『差分方程式講義』(2000・サイエンス社)』 [参照項目] | | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
This isomerism occurs when salts or complex salts...
The first nationwide workers' organization in ...
...It dissolves keratin and is used as a treatmen...
An ancient Korean dynasty. Together with Wiman Jo...
It is made by stretching waste cocoons flat and m...
... refers to the act of illegally seizing an air...
Poet. Born in Oita City on June 8, 1899. He moved...
A branch of chemistry that understands chemical p...
An evergreen tall tree of the Myrtaceae family (il...
Grebes, Petunia family. Total length 40-56cm. Ther...
A former town in Nishisonogi County in the souther...
…Wayang goreh in Western Java is still popular to...
…One of the reasons why the Delphic oracle had ab...
〘 noun 〙① To study under a teacher. [Northern Hist...
…An evergreen tree of the Rutaceae family, it is ...