Hybrid

Japanese: 雑種 - ざっしゅ(英語表記)hybrid
Hybrid

An individual resulting from the crossbreeding of genetically different organisms. In the narrow sense, it refers to an individual that is heterozygous for the gene in question, but in the broad sense, it refers to an offspring that has both the characteristics of both parents and is the result of crossbreeding between different varieties, lineages, species, etc.

If the genetic difference between the parents is in one gene, the hybrid is called a monohybrid; if the difference is in two genes, it is called a bihybrid, followed by a trihybrid, a tetrahybrid, or a polyhybrid.

An individual obtained by crossing genetically different pure lines is called the first generation hybrid, and is usually abbreviated as F1 . An individual resulting from crossing or self-fertilization between F1s is called the second generation hybrid ( F2 ), and the progeny of similar crosses or self-fertilization are called the third generation hybrid ( F3 ) and the fourth generation hybrid ( F4 ). F1 has the highest degree of hybridity, but F1s are genetically identical to each other. Genetic segregation occurs between F2 individuals, resulting in individuals that are different in both genotype and phenotype.

Hybrids can exhibit heterosis, which means superior qualities to their parents, and these qualities are used practically in crop and livestock breeds. However, hybrids between distantly related species can exhibit heterosis, which means the offspring is less viable, and can also be sterile or infertile.

[Shinya Iyama]

Plant hybrids

Generally, hybrids are produced between different varieties or lineages of the same taxonomic species, and varieties that take advantage of the hybrid vigor and uniformity of the F1 hybrids are widely used.

In hybrids between different species or genera that are more distantly related taxonomically (interspecific hybrids, intergeneric hybrids), not only the genes but also the genome structure often differ between the parents. For this reason, such hybrids often become completely sterile and last only for one generation. In this case, doubling the number of chromosomes in the F1 to create an amphidiploid increases fertility and allows it to be maintained as a new lineage. Examples of this occurring in nature include the widely cultivated common wheat (hexaploid, AABBDD), which was produced by doubling an intergeneric hybrid (triploid, ABD) between cultivated diploid wheat (tetraploid, AABB genome) and the wild Aegilops sulphureus (diploid, DD), and the amphidiploid B. napus (a member of the rapeseed and turnip family) produced by doubling an interspecific hybrid between Brassica campestris (a member of the Chinese cabbage family) and B. oleracea (a member of the cabbage family). Hakuran, which was artificially selected from the amphidiploid F1 hybrids between Chinese cabbage and cabbage, is a vegetable variety that has the same head-forming ability as its parents and has the taste of both cabbage and Chinese cabbage.

On the other hand, a hybrid variety that takes advantage of the sterility of triploids is the seedless watermelon, a hybrid (triploid) between a normal diploid watermelon and a tetraploid watermelon obtained by artificially doubling the normal diploid watermelon.

Individuals that combine the characteristics of both parents, obtained by grafting or other methods without going through the reproductive process, are called vegetative hybrids or grafted hybrids, and have been experimentally obtained with eggplants and peppers. Furthermore, with the development of cell culture techniques since the 1960s, it has become possible to multiply hybrid cells created by artificially fusing cells with different genetic makeup, create calluses, and then redifferentiate them to create hybrid plants. Amphidiploids have been created by fusing the protoplasts of different tobacco cells with their cell membranes removed, and pomato, a plant with the characteristics of both tomato and potato, has been obtained from hybrid cells obtained by protoplast fusion between tomato and potato.

Furthermore, with the development of gene manipulation techniques combined with advances in cell culture techniques, in the 1990s it became possible to practically create hybrids that incorporated specific genes without going through the reproductive process, and biotechnology-based breeding began to attract attention.

[Shinya Iyama]

Animal hybrids

In the case of livestock, hybrids are also produced in the hope of creating a new breed that is superior to the parents by imparting certain advantageous characteristics of one parent to the other. In other words, hybrid vigor is expected to result in a breed that will be superior to the parents in terms of performance as livestock. The phenomenon of hybrid vigor is most evident in first generation hybrids.

When hybrid vigor is expected between genetically distant individuals, intergeneric and interspecific crosses are performed. Since this involves mating between individuals that are reproductively isolated in nature, methods such as artificial insemination may be necessary. Many of these hybrids are infertile, so only first-generation hybrids can be obtained. An example of an intergeneric hybrid is the Tufan duck, which is bred in Taiwan as a meat duck. This is a first-generation hybrid between a female Tsai'er, a native duck, and a male Muscovy duck. It matures early, fertilizes early, and has meat that is superior to that of its parents. An example of an interspecific hybrid is the mule, a first-generation hybrid between a female horse and a male donkey. It is strong and durable, can eat rough food as well as a donkey, and is as large and strong as a horse.

In livestock, interbreed crossbreeds are generally used for hybrid vigor, and are simply called crossbreeds or hybrids. These hybrids are fertile, so they are also used to create new breeds. Examples include the Thoroughbred, which was created by thoroughly improving a cross between a female native British horse and a male Oriental horse, and the Corriedale, a dual-purpose breed created by continuously crossbreeding the best of a female Merino sheep, a wool-producing breed, and a male Romney Marsh sheep, a long-haired British sheep. The effect of hybrid vigor from interbreed crossbreeds is particularly evident in the hybridization of livestock and poultry for meat production.

Even more closely related hybrids include interstrain hybrids and inbred hybrids, but with the exception of small laboratory animals, the costs of producing and maintaining inbred strains in livestock for production are enormous, so inbred hybrids are only used in chickens by a very small number of breeding organizations worldwide.

In crossbreeding between breeds or lines, the product of crossing two lines is called a single cross or a binary hybrid, and this type of crossbreeding is widely used in all livestock. A three-lineage crossbreed obtained by crossing the F 1 of a binary hybrid of A×B with a third lineage C is called a ternary hybrid, and a four-lineage crossbreed obtained by crossing the F 1 of A×B with the F 1 of C×D is called a quaternary hybrid. There is a method called recurrent crossbreeding or rotational crossbreeding, in which three or more breeds (or lines) are crossed in a sequential rotation, and generally, a female that has been given sufficient heterogeneity through recurrent crossbreeding is crossed with a superior purebred male. Interbreed hybrids are especially mainstream in pigs, and binary, ternary, quaternary, and recurrent hybrids are produced. In beef cattle, almost all of the developed livestock countries have switched to interbreed hybrids, and in the United States, the production of interbreed recurrent hybrids is also tending to spread to beef cattle. In contrast, in egg-laying chickens, there are few inter-breed hybrids that utilize hybrid vigor, and the use of inter-line hybrids has shifted to the use of inter-line hybrids, with most of them being two-way, three-way, and four-way hybrids between White Leghorn lines. In dairy cows, too, there is no effect of hybrid vigor on milk production, and recurrent crosses between lines are being carried out.

Although attempts have been made to create improved species using genetic engineering techniques for plants and some animals, it is difficult to change the genetic composition of livestock using such techniques because the production traits of livestock involve many gene pairs, and it is thought that repeated selection and crossbreeding will continue to be the main method in the future. This method takes a long time, more than 10 to 15 years, so trial and error is not allowed when creating new improved species. It is necessary to set breeding goals by forecasting how the quantitative and qualitative traits that humans desire in livestock will change over the long term with the times, select the most suitable breeding materials, and devise an improvement plan.

[Nishida Tomoko]

[References] | F1 hybrids | genetic engineering | isolation | callus | genome | hybrid vigor | biotechnology | polyploid | sterility | heterozygosity

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

遺伝的に異なる生物の間の交雑によって生じた個体をいう。狭義には、問題にしている遺伝子に関してヘテロ(異型)の状態であるものをいうが、広義には、異なる品種、系統、種などの間の交雑によって生じた、両親の性質をあわせもつ子孫をいう。

 両親の遺伝的な差異が一つの遺伝子である場合には、その雑種を単性雑種、2遺伝子について異なる場合には両性雑種、以下、三性雑種、四性雑種、多性雑種という。

 遺伝的に異なる純系の間の交雑によって得られる個体を雑種第一代といい、普通F1の記号で表す。F1どうしの交雑または自殖(自家受精)によって生ずる個体は雑種第二代(F2)といい、以下同様な交雑または自殖の子孫を雑種第三代(F3)、雑種第四代(F4)という。F1は雑種性がもっとも高いが、F1どうしは互いに遺伝的に同一である。F2個体の間には、遺伝的な分離がおこって、遺伝子型も表現型も互いに異なるものが生ずる。

 雑種には、その両親よりも優れた性質を示す雑種強勢(ヘテローシス)が現れることがあり、その性質が農作物や家畜の品種として実用的に利用される。しかし、遠縁のものの間の雑種には、かえって生活力が損なわれる雑種弱勢の現象が現れることがあり、また不稔(ふねん)や不妊となる場合がある。

[井山審也]

植物の雑種

一般に分類学上の同一の種のなかの異なる品種や系統の間で雑種がつくられ、その雑種強勢や、F1の均一性を利用した品種が広く実用化されている。

 分類学的にさらに遠縁の、異なる種や属の間の雑種(種間雑種、属間雑種)では、両親の間で、遺伝子ばかりでなくゲノム構成も異なる場合が多い。そのために、このような雑種は完全不稔になって、一代限りになることが多い。この場合、F1の染色体数を倍化して複二倍体をつくると、稔性が高くなり、新たな系統として維持することができる。自然界でおこったこのような例としては、栽培二粒系コムギ(四倍体、ゲノム式AABB)と野生種のタルホコムギ(二倍体、DD)との間に生じた属間雑種(三倍体ABD)の倍化によって生じた、現在広く栽培されているパンコムギ(六倍体、AABBDD)や、アブラナ属のブラシカ・キャンペストリスBrassica campestris(ハクサイの仲間)とブラシカ・オレラシアB. oleracea(キャベツの仲間)との間の種間雑種の倍化による複二倍体ブラシカ・ナプスB. napus(ナタネやスウェーデンカブの仲間)がある。人為的には、ハクサイとキャベツとの間の種間雑種のF1を複二倍体化したものから選び出されたハクランは、両親と同じく結球性があり、キャベツとハクサイの食味をあわせもつ野菜の品種である。

 逆に三倍体の不稔性を利用した雑種の品種として、通常の二倍体のスイカと、それを人為的に倍化して得た四倍体のスイカとの間の雑種(三倍体)による種なしスイカがある。

 接木(つぎき)などによって、生殖過程を経ないで、両親の形質をあわせもった個体が得られたものを、栄養雑種または接木雑種といい、ナスやトウガラシの類で実験的に得られている。また、1960年代からの細胞培養技術の発達によって、異なる遺伝的構成の細胞を人工的に融合させてつくった雑種細胞から、これを増殖させてカルスをつくり、さらに再分化させて雑種植物を作出することが可能になった。異種のタバコの細胞の、細胞膜を取り除いた原形質(プロトプラスト)の融合からつくられた複二倍体や、トマトとジャガイモの原形質融合による雑種細胞から、トマトとジャガイモの両方の性質をもつ植物のポマトなどが得られている。

 さらに、遺伝子操作技術の発達が細胞培養技術の進歩に加わって、1990年代になると、特定の遺伝子を生殖過程を経ずに取り入れた雑種個体をつくることが実用化されるようになり、バイオテクノロジーによる育種が注目されるようになった。

[井山審也]

動物の雑種

家畜の場合にも、雑種は一方の親の有利な特定形質を他方へ付与することによって、より優れた新品種を作出する、すなわち、家畜としての性能が親よりも優れている雑種強勢を期待してつくられる。雑種強勢現象は一代雑種にもっとも強く現れる。

 遺伝的に遠い個体間で雑種強勢を期待する場合は、属間および種間交雑が行われる。これは自然界で生殖的隔離のある個体間の交配であるから、人工授精などの方法を必要とすることもある。これらの雑種の多くは不妊であるため、一代雑種しか得られない。属間雑種の例としては、台湾で肉用アヒルとして飼育されている土蕃鴨(トウホアンアー)があり、これは在来のアヒルである菜鴨(ツァイアー)の雌とバリケンの雄との一代雑種で、早熟早肥で肉質は親に勝る。種間雑種には、雌ウマと雄ロバの一代雑種であるラバがある。強健で耐久力があり、粗食の点はロバに劣らず、体の大きさと力の強さはウマに劣らない。

 家畜では、一般的に品種間交雑が雑種強勢に利用され、品種間雑種を単に交雑種または雑種とよぶ。これらの雑種は繁殖力をもつため、新品種の作出にも利用される。イギリスの在来馬の雌と東洋種の雄との雑種から徹底的に改良されてできたサラブレッドや、ヒツジの毛用種メリノーの雌とイギリスの長毛種ロムニー・マーシュの雄の雑種のうち優れたものどうしの交雑を続けてできた毛肉兼用種のコリデールはその例である。とくに品種間交雑による雑種強勢の効果は、肉生産のための家畜や家禽(かきん)の雑種にみられる。

 さらに近縁な交雑種として、系統間雑種、近交系間雑種があるが、実験用の小動物を除き、生産用の家畜では近交系の作出と維持に要する費用が莫大(ばくだい)なため、近交系雑種利用は世界的にもごく少数の育種組織でニワトリに対して行われているにすぎない。

 品種や系統間の交雑において、2系統の交雑によって得られるものを単交雑種または二元雑種とよび、この型の交雑はあらゆる家畜で広く利用されている。A×Bの二元雑種のF1に第三の系統Cを交配して得られた3系統の交雑種を三元雑種、A×BのF1とC×DのF1との交配による4系統の交雑種を四元雑種とよぶ。3品種(または系統)以上を逐次循環させて交雑する循環交雑または輪番交雑という方法があり、一般に循環交雑によって十分なヘテロ性を与えられた雌に優れた雄の純粋種を交配させる。ブタではとくに品種間雑種が主流であり、二元雑種、三元雑種、さらに四元雑種、循環雑種がつくられている。肉牛も畜産先進国ではほとんどすべて品種間交雑種に移行し、アメリカでは品種間の循環雑種の作出が肉牛にも普及してゆく傾向にある。これに対し卵用鶏では、雑種強勢を利用した品種間雑種は少なく、系統間雑種の利用へと移行し、ほとんどが白色レグホンの系統間の二元・三元・四元雑種で占められている。また乳牛においても、泌乳能力に雑種強勢効果はみられず、系統間の循環交雑が行われている。

 植物や一部の動物では、遺伝子工学的手法による改良種の作出が試みられているが、家畜の生産形質は多数の遺伝子対が関与しているため、このような手法で遺伝子組成を変えることはむずかしく、今後も選抜と交配を繰り返す方法が中心となると考えられる。この方法は10~15年以上もの長い年月を要するため、新しい改良種を作成する場合、試行錯誤は許されず、長期にわたって時代とともに人類が家畜に求める量的・質的形質がどのように変化するかを見通して育種目標を設定し、最適な育種素材を選んで改良計画を立案する必要がある。

[西田恂子]

[参照項目] | 一代雑種 | 遺伝子工学 | 隔離 | カルス | ゲノム | 雑種強勢 | バイオテクノロジー | 倍数体 | 不稔性 | ヘテロ

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Hybrid vigor

>>:  Magazine advertising - zasshi koukoku

Recommend

Spacewalk - Uchuuyuuei (English spelling) space-walk

Going outside a spacecraft and walking around in s...

Red sardine - Aka sardine

〘Noun〙① A salted, reddish sardine. Also refers to ...

Platycerus delicatulus (English spelling) Platycerusdelicatulus

...The body is milky white and cylindrical, bent ...

Vibrio parahaemolyticus

Formerly known as pathogenic halophilic bacteria, ...

Intramuscular injection

A needle is inserted deep into the skin and into t...

Niutsuhime Shrine

Located in Kamiamano, Katsuragi-cho, Ito-gun, Wak...

Kapp-Lytowicz Uprising - Kapp-Lytowicz Uprising

…On March 13, 1920, a coup d'état was planned...

Kanto Governor's Office Army Department

…Japanese army units stationed in Manchuria (pres...

zoopraxiscope

...In 1872, at the request of Leland Stanford (fo...

Narikagocho - Narikagocho

〘Noun〙 One of the three local ledgers in the Edo p...

Analog signal

A signal that is expressed as a continuous quantit...

Kame no Yu - Kame no Yu

...There is a bus service from Tazawako Station o...

Bin blending

…Bed blending is a method of homogenizing large a...

Gozan-sama - Good day

A general term for the style of calligraphy writte...

Andreev, VV (English spelling) AndreevVV

…The unique triangular body was already seen in s...