Problems that cannot be drawn - Sakuzufunoumondai

Japanese: 作図不能問題 - さくずふのうもんだい
Problems that cannot be drawn - Sakuzufunoumondai

A construction problem is a problem of drawing a figure that satisfies given conditions using a specified tool a finite number of times. A problem is called a constructible problem when the desired figure can actually be drawn, but when the figure actually exists but cannot be drawn using the specified method, it is called an unconstructible problem. Many problems have been considered since Euclid to draw plane figures using a ruler and compass, or only one of them, but the three most famous unconstructible problems using a ruler and compass are the following Greek problems: [1] Angle trisection problem, [2] Cube doubling problem (also called Delos' problem), and [3] Circle squaring problem.

[1] is a problem in which you are asked to construct θ/3 for a given angle θ. Note that cosθ=4cos 3 (θ/3)-3cos(θ/3), so if we give a=cosθ, then (1) 4x 3 -3x-a=0
The problem then becomes one of constructing x which satisfies the above.

[2] is a problem about doubling the volume of a given cube.
(2) x 3 - 2 = 0
The problem is to construct a point x that satisfies. The coordinates of a point that can be constructed with a ruler and compass are elements of an extension field of a power of 2 over a given field K (the smallest field containing rational numbers and a in [1], the field of rational numbers in [2]), and (1) and (2) are irreducible cubic functions over K, so it can be shown that construction is impossible. This was proven in 1837 by Pierre-Laurent Wantzel (1814-1848).

[3] is the question of whether it is possible to construct a square with the same area as a given circle using a ruler and compass, and in 1882 CLF Lindemann (1852-1939) proved the transcendence of π, showing that it is impossible to construct the square. It is extremely interesting that such a geometric problem can be solved by algebraic considerations.

It is also known that a regular n-gon can be constructed using a ruler and compass if and only if n = 2s p 1 p 2 … p t , where p 1 , p 2 , …, p t are distinct prime numbers of the form p i = 2 hi + 1.

[Tsuneo Kanno]

[Reference] | Circle square problem | Angle trisection problem | Cube doubling problem

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

指定された器具を有限回用いて、与えられた条件を満たす図形を描く問題を作図問題という。目的の図形が実際描けるときに、作図可能問題というが、現実に図形は存在するのに、指定された方法では描けないとき、作図不能問題という。定規とコンパス、またはその一方だけを用いて平面図形を描く問題はユークリッド以来、たくさん考えられてきたが、定規とコンパスを用いる作図不能問題では次のギリシアの三大作図不能問題が有名である。〔1〕角の三等分問題、〔2〕立方体倍積問題(デロスの問題ともいう)、〔3〕円積問題。

 〔1〕は、与えられた角θに対しθ/3を作図する問題で、cosθ=4cos3(θ/3)-3cos(θ/3)に注意するとa=cosθを与えて
  (1)  4x3-3x-a=0
を満たすxを作図する問題になる。

 〔2〕は、与えられた立方体の体積を2倍にする問題で、
  (2)  x3-2=0
を満たすxを作図する問題になる。定規とコンパスで作図できる点の座標は、与えられた体K(〔1〕では有理数とaを含む最小の体、〔2〕では有理数体)上2のべき次の拡大体の元であることと、(1)、(2)がK上既約な三次式であることから、作図不能が示される。これはワンツェルPierre-Laurent Wantzel(1814―1848)によって1837年に証明された。

 〔3〕は、与えられた円と同じ面積をもつ正方形を定規とコンパスで作図できるか、という問題で、1882年リンデマンC. L. F. Lindemann(1852―1939)はπの超越性を証明して、これが作図不能であることを示した。このような幾何学的問題が代数的な考察によって解決されることはきわめて興味深い。

 また、定規とコンパスで正n角形が作図できるのは、n=2sp1p2……ptで、p1, p2,……, ptは相異なるpi=2hi+1の形の素数のときで、かつ、そのときに限ることが知られている。

[菅野恒雄]

[参照項目] | 円積問題 | 角の三等分問題 | 立方体倍積問題

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Saxony - Sachsen (English spelling)

>>:  Zakuska (Russian: закуска/zakuska)

Recommend

wizard

...From the Middle Ages to the early modern perio...

Brilliance - Raishi

〘Noun〙 ("Rai" is the handle of a hoe , a...

International law of war

Traditionally, international law has been conside...

Imbezillität (English spelling)

...They are physically weak, and many die in chil...

Sulfuric ester - sulfuric ester

A general term for compounds in which one or two h...

voievod

...The Asen dynasty, which inhabited the area sou...

Einaudi, G. (English spelling) EinaudiG

...One was Augusto Monti (1881-1966), an anti-fas...

Humor

…The original word for English humor (or humor in...

Amish - The Amish are

A Protestant sect of Christianity. It was founded ...

Suppé, Franz von

Born: April 18, 1819, Spalato, Dalmatia [Died] May...

doctor medicinae (English spelling)

The Arabic medicine is a complex of ancient texts...

Widman, J.

…On the other hand, there is also a theory that t...

Tepe Hissar (English spelling)

...Many ruins can be seen in and around the city....

Kensai Ikeda

Year of death: April 30, 1918 Year of birth: Tempo...

Etomo Chashi - Etomo Chashi

...In Jinya-cho in the northwest, there is the si...