Mine ventilation

Japanese: 坑内通気 - こうないつうき(英語表記)mine ventilation
Mine ventilation

To circulate fresh air inside the mine. When a large network of tunnels is constructed underground, such as in a coal mine, a mine, or a long tunnel (such as the Seikan Undersea Tunnel), and people work there, or when transportation and people pass through there after completion, it is necessary to supply fresh air from above ground for the following purposes:

(1) To provide breathing air to people underground.

(2) To dilute and render harmless the toxic and harmful gases that often emerge from the mine and then discharge them.

(3) As the mine deepens, the temperature rises due to geothermal heat and the environment deteriorates. This is cooled by ventilation.

Mines and coal mines have tunnel networks that extend for tens or hundreds of kilometers underground. It is extremely difficult to supply air to every part of these tunnels evenly, so a great deal of research has been done on ventilation in mines since ancient times, and even today international symposiums are held almost every year.

There are three main formulas for calculating and designing ventilation:

(1) Atkinson's formula

In equation (1), h is called the "ventilation pressure" and represents the pressure applied to push or suck air into the tunnel. In this case, the pushing pressure is called positive pressure, and the suction pressure is called negative pressure. It is measured in millimeters of water column. L is the length of the tunnel being ventilated (meters), U is the perimeter of the cross section taken perpendicular to the extension direction of the tunnel (meters), F is the cross-sectional area of ​​the tunnel (square meters), and v is the wind speed (meters/second) passing through the tunnel. Similarly, Q is the amount of wind passing through the tunnel (cubic meters/second). Q = Fv . k is called the "friction coefficient of the tunnel", and there are many measured values.

Transforming equation (1) yields the following two formulas.


In both equations (2) and (3), the right-hand side is only the tunnel dimensions and friction coefficient, and is a fixed quantity once the tunnel is determined. Since the left-hand side is equal to the right-hand side, M and A in (2) and (3) are both values ​​specific to the tunnel. The former is called resistivity, which indicates how difficult it is for air to pass through the tunnel, and is expressed in units of murgues. The latter is a value that expresses how easy it is for air to pass through the tunnel, called isovolume, and is expressed in square meters. In mining, equations (1), (2), and (3) are used universally. Equations (2) and (3) are used to calculate the combination of ventilation when several tunnels are connected in series or parallel. The tunnel network inside a mine has complex combinations in series and parallel, but if the ventilation resistance of the tunnel network is combined, it can eventually be replaced with a single tunnel equivalent to the tunnel network, and this becomes the basis for design calculations.

There are two methods of ventilation: natural ventilation, which uses the temperature difference between inside and outside the mine, and mechanical ventilation, which uses a blower. Natural ventilation has the advantage of not requiring power, but it has the disadvantage that the direction of the ventilation flow reverses between summer and winter, and ventilation stops in spring and autumn, so all large coal mines and other mines use the mechanical ventilation method. There used to be various types of blowers, but now the propeller type, which has stable performance, is the mainstream.

Local ventilation is used in places where the ventilation force of the main blower attached to the intake or exhaust mouth does not reach, such as the end of the tunnel or the machine seat inside the mine. There are two types of local ventilation: the jet ventilation method, in which compressed air or high-pressure water is blown out from a nozzle attached to the center of the end of a cylindrical air pipe, which is attracted by the air and creates a ventilation force, and a small propeller-type blower is attached to the end of the air pipe. Local ventilation is a blowing type, and is mainly used to blow air out of the air pipe mouth at the end of the tunnel, but the main ventilation method is to suck air out of the mine or to push air into the mine. The suction type is overwhelmingly more common in coal mines and other mines in Japan and many other countries. As a result, the air pressure inside the mine is lower than atmospheric pressure. This is called negative pressure.

In recent years, mines and coal mines have become deeper, and tunnel networks have become longer and more complex. This has made it difficult to design ventilation calculations manually, so computers have begun to be used to calculate them. This progress is expected to pave the way for automatic adjustment of ventilation volume to each tunnel according to the conditions inside the mine in the future.

[Toshiro Isobe]

"Practical Mine Ventilation" by Atsumi Tosaku, supplemented by Kumazawa Yoshio (1957, Morikita Publishing)

Composite methods for tunnel ventilation networks (series and parallel connections)
©Shogakukan ">

Composite method of tunnel ventilation network (series connection and parallel connection)

Local ventilation
©Shogakukan ">

Local ventilation


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

新鮮な空気を坑内に流通させること。炭鉱、鉱山あるいは長大トンネル(たとえば青函(せいかん)海底トンネル)など、地下に大きな坑道網がつくられ、そこに人が働く場合、また竣工(しゅんこう)後に交通機関が通ったり、人が往来したりする場合、次の目的で地上から新鮮な空気を送り込む必要がある。

(1)坑内にいる人に呼吸のための空気を供給する。

(2)坑内から往々にして湧出(ゆうしゅつ)する有毒・有害ガスを薄めて無害にして排出する。

(3)坑内が深くなるにつれ、地熱の影響で高温になり、環境が悪化する。これを通風によって冷却する。

 鉱山や炭鉱の地下には数十キロメートルから数百キロメートルもの坑道網が展開している。これら坑道のすべての箇所に空気をまんべんなく供給することは非常にむずかしく、古くから坑内通気に関して多数の研究が行われ、現在でも毎年のように国際シンポジウムが開催されている。

 通気の計算や設計のための公式は主として次の三つである。

(1)アトキンソンの公式

 (1)式では、hを「通気圧」といい、坑道に通風するための押し込み、または吸引の圧力を表す。この場合、押し込み圧を正圧、吸出し圧を負圧という。単位は水柱で示しミリメートルで計る。またLは通気を行う坑道の長さ(メートル)、Uは坑道の延長方向に対して垂直にとった断面の周辺長(メートル)、Fは坑道の断面積(平方メートル)、vは坑道内を通過する風速(メートル/秒)を表す。Qは同じく、坑道内を通過する風の量(立方メートル/秒)。またQ=Fvでもある。kは「坑道の摩擦係数」といい、多くの実測値がある。

 (1)式を変形すると次の二つの公式が導かれる。


 (2)、(3)式ともに右辺は坑道の寸法と摩擦係数のみであって、坑道さえ決まれば一定の数量となる。左辺は右辺に等しいので、(2)(3)のMAともに坑道に特有な数値である。前者は坑道の風の通りにくさを示すため比抵抗といい、ミュルグという単位で示す。後者は坑道の風の通りやすさを表現する数値で、等積孔と称され、平方メートルが単位である。鉱山学においては、(1)、(2)および(3)式は万国共通に用いられている。(2)および(3)式は、いくつかの坑道が直列あるいは並列に連結されているとき、通気上の合成をするために用いられている。坑内の坑道網は直列、並列に複雑な組合せをもっているが、坑道網の通気抵抗を合成していけば、最終的には坑道網と等価な1本の坑道に置き換えられ、これが設計計算の基礎となる。

 通風の方法には、坑内外の温度差を利用する自然通気法と、送風機を用いる機械通気法とがある。自然通気法は動力を必要としない利点はあるが、夏と冬とで通気の流れの方向が逆転したり、春と秋には通気がなくなるという不都合もあるため、大きな炭鉱や鉱山ではすべて機械通気法が用いられている。送風機は以前には各種のものがあったが、現在では性能の安定したプロペラ型が主流となっている。

 坑道の掘進先、坑内の機械座など、入気または排気坑口に取り付けた主要送風機の通気力が及ばない箇所には局部通気法を用いる。それには、円筒形の風管の端の中央に取り付けたノズルから圧縮空気や高圧水流を吹き出させて、それに誘われて通気力が生ずるジェット通気法、およびプロペラ型の小型送風機を風管の端に取り付ける方法がある。局部通気法は吹込み式であり、掘進先に風管口から風を吹き出す方法が主体であるが、主要通気は坑内より空気を吸い出す方法と、逆に坑内へ空気を押し込む方法とがある。日本をはじめ多くの国の炭鉱、鉱山では吸出し式が圧倒的に多い。そのため坑内の気圧は大気圧より低い状態となる。これを負圧と称している。

 近年、鉱山や炭鉱が深部化して坑道網も長大化し、複雑になってきている。そのため通気の設計計算も人力では及ばないほどのものになり、コンピュータを利用して計算するようになってきた。このような進歩は将来、坑内状況に応じて各坑道への通気量を自動調整する道を開くものとして注目されている。

[磯部俊郎]

『厚見利作著、熊沢良雄補遺『実用坑内通気』(1957・森北出版)』

坑道通気網の合成法(直列連結と並列連結)
©Shogakukan">

坑道通気網の合成法(直列連結と並列連結…

局部通気法
©Shogakukan">

局部通気法


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Underground drainage - Kounaihaisui

>>:  Mine timbering

Recommend

Ukan [town] - Ukan

A former town in Jobo County, central Okayama Pref...

Church of the Nazarene

One of the leading Holiness churches in the United...

Tsune Nakamura

Year of death: December 24, 1924 Year of birth: Ju...

Vollard, Ambroise

Born: 1865. Saint-Denis, Reunion Island Died in 19...

Khyber Pass - Khyber

→Khyber Pass Source : Heibonsha Encyclopedia About...

Coincidence method

A type of measurement method in which the spatial ...

Kanoko mochi - Kanoko mochi

A type of mochi confectionery. Gyuhi Husband etc. ...

Punishment - Choubatsu

In general terms, it is synonymous with disciplin...

International Convention for the Safety of Life at Sea; SOLAS

An international treaty that sets out regulations ...

Climate change - climatic variation

It is often used in the same sense as climate cha...

Wankel, F.

…It is contrasted with a general reciprocating pi...

Server - Server (English)

A computer or program that performs tasks in resp...

Coma Cluster of Galaxies

...It was traditionally part of the constellation...

Sensillum - Sensillum

These are tiny sensory organs found on the surface...

Hiromi Arisawa

Statistician and economist. Born in Kochi City on...