This is the specific heat equation derived by Einstein to explain why the molar specific heat of a solid element is a value significantly smaller than the 3 R indicated by Dulong-Petit's law*. The lattice vibration of a crystal consisting of N atoms of the same type is considered to be a set of N independent three-dimensional harmonic oscillators that all have a common vibration frequency ν (i.e. Einstein's model*). If we consider this system of harmonic oscillators to be undergoing thermal vibration at temperature T , and use statistical mechanics to find the average value of its energy, we get Differentiating this with respect to temperature T gives Here, fE ( x ) = x2e /( ex - 1) 2 is a function called the Einstein function. This equation was originally devised to explain the anomaly in specific heat in the low temperature region, but the discrepancy becomes larger at even lower temperatures, and this difficulty was later addressed by Debye, who created a new specific heat equation. See also the entry on Debye's specific heat equation*. Source: Asakura Publishing Dictionary of Laws Information |
固体の元素単体のモル比熱が,デュロン‐プティの法則*で示される3R よりかなりずれて小さな値となることを説明できるように,アインシュタインが導いた比熱式.N 個の同種原子からなる結晶の格子振動を,すべて共通の振動数 ν をもつ N 個の独立した三次元調和振動子の集合(つまりアインシュタインのモデル*)と考える.この調和振動子の系が温度 T において熱振動しているものとして,そのエネルギーの平均値を統計力学によって求めると となる.これを温度 T で微分すると の形になる.ここで fE(x)=x2ex/(ex-1)2 はアインシュタイン関数と呼ばれる関数である.もともと低温領域における比熱の異常性を解明するために考えられた式であるが,さらに低温となると不一致が大きくなり,この難点については後にデバイが改良を加えて新しい比熱式をつくった.デバイの比熱式*の項も参照. 出典 朝倉書店法則の辞典について 情報 |
The capital of Peru and the capital of Lima Provin...
Radiation emitted by the atmosphere or the earth...
...The conflict between the north and south, repr...
Volcanic bombs that are expelled from the crater, ...
A major city in the Hijaz region in western Saudi...
…Many large, excellent ships in recent years are ...
(A variation of "omohoyu (thought)") [1]...
...The "Velikie Chet'i-Minei" (1552...
A form of instrumental music developed in the latt...
(German: Rahmenerzählung ) A work in which another...
A scholar of ferrous metallurgy. Born in Hamada, ...
…This ancient culture is called the Dafunkeng cul...
1902-1955 A Showa-era Okinawa researcher and dial...
A Russian (Soviet) bass singer. One of the greates...
…Similar breeding behavior is also known in the S...