Method of exhaustion

Japanese: 区分求積法 - くぶんきゅうせきほう(英語表記)method of exhaustion
Method of exhaustion
This is a method for calculating the area or volume of a geometric figure, and is the basis of definite integrals. For example, when a function y = f ( x ), such as y = x2 + 1 or y = sin x + 1, is given, and we want to calculate the area S of the region bounded by the x- axis, the curve y = f ( x ), and the two straight lines x = a and x = b ( a < b ), this region generally cannot be completely divided into rectangles or triangles, because some of its boundaries include smooth curves. Therefore, the interval [ a , b ] is divided into several small parts, and perpendicular lines are erected from all of the dividing points to subdivide the region into thin cylindrical figures. Then, a rectangle is created whose height is the midpoint between the maximum and minimum heights of the curved parts on the upper side of each of the rectangular parts, and this is replaced with the originally subdivided cylindrical figures. The sum of the areas of all the rectangles created in this way, S ', gives an approximation of the area S. The more finely the interval is divided, the more rectangles there will be, and the more accurate the approximation will be. This method of calculating S as the limit value of the sum of the areas of all rectangles when the interval is divided into infinitesimal small parts is called the quadrature method by division.

Source: Encyclopaedia Britannica Concise Encyclopedia About Encyclopaedia Britannica Concise Encyclopedia Information

Japanese:
図形の面積や体積を求める一つの方法であって,定積分の基礎となる考え方である。たとえば,yx2+1 ,あるいは y= sin x+1 のような関数 yf(x) が与えられたとき,x 軸と曲線 yf(x) および2直線 xaxb(ab) で囲まれた領域の面積 S を求める場合を考えると,この領域は,その境の一部になめらかな曲線を含むから,一般に,長方形や三角形に余すところなく分割することはできない。それで,区間 [ab] をいくつかの小部分に区分し,そのすべての区分点から垂線を立てて,領域を細い柱状の図形に細分する。ここで各柱の上側の曲線部分における最高の高さと最低の高さの中間の値を柱の高さとするような長方形をつくり,初めに細分された柱状の図形と置き換える。こうしてできたすべての長方形の面積の和 S' は,面積 S の近似値を与える。そして区間を細かく区分すればするほど,長方形の数が多くなり,近似の精度が高まる。このようにして,分割を限りなく細かくしたときの,あらゆる長方形の面積の和の極限値として S を計算する方法を区分求積法という。

出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報

<<:  Kubunden - Kubunden

>>:  Kouprey (English spelling)

Recommend

Abe City - Abenoichi

…In contrast, Eika City and Atokuwa City were loc...

Tribus - Tribus (English spelling) Latin tribus

A subdivision of the ancient Roman people. During...

Simpang Kinabalu (English spelling)

...Kinabalu National Park covers an area of ​​686...

Ota [city] - Ota

A city in the southeastern part of Gunma Prefectur...

Blue Line - Aosen

〘 noun 〙① A blue line. ※Haruno (1903)〈Tayama Katai...

Conscius

... Shortly afterwards, the book "Tetsugaku ...

Obadiah; Book of Obadiah

The shortest prophetic book in the Old Testament, ...

Owen Stanley Range

A steep mountain range that runs from northwest to...

Flame analysis

A general term for analytical methods that utiliz...

Hekikoku (English spelling) pì gǔ

One of the Chinese Taoist arts. "Bi" mea...

Adler

Austrian psychiatrist and psychologist. He initial...

Ishoan - Ishoan

This building is located in Higashinada Ward, Kobe...

Tetsutaro Ariga - Thank you Tetsutaro

Born: April 1, 1899 in Osaka Died May 25, 1977. Pr...

Ostwald process - Ostwald method

This is an industrial method for producing nitric ...

Alfeld - Alfeld

… [Nature] Surrounded by the Carpathian Mountains...