Matrix mechanics

Japanese: 行列力学 - ぎょうれつりきがく
Matrix mechanics

In quantum mechanics, physical quantities are operators. If these operators are expressed as matrices, then the dynamical relations that give the relationships between physical quantities and the changes in physical quantities over time become mathematically matrix equations. This form of quantum mechanics expressed in matrices is called matrix mechanics. It is also called matrix mechanics. Therefore, matrix mechanics is not a special type of mechanics, but is just one form of expression of quantum mechanics.

Heisenberg discovered the basic formulas of quantum mechanics starting from N. H. D. Bohr's atomic model. In Bohr's atomic model, he first determined the electrons in hydrogen atoms according to classical mechanics using the electron's coordinates and momentum, and then selected discrete orbits from these orbits that followed the conditions given by Bohr, i.e., the quantum conditions, and considered these orbits to be the steady states of the electrons. He then considered that the electrons radiate and absorb light by moving between these steady states. In this case, the energy of the light emitted or absorbed is equal to the difference in energy between the steady states the electron moves to.

Heisenberg noticed this fact and thought that the coordinate q and momentum p of an electron should not be treated as ordinary functions of time, but as a collection of elements q ( m , n ), p ( m , n ) characterized by any two pairs of stationary states m and n . In other words, he proposed that both the coordinate q and momentum p should be expressed as matrices, and he proposed the basic equation of quantum mechanics, qp - pq = i ħ (ħ is 1/2π of Planck's constant h ).
(1925) For this reason, when people say matrix mechanics, they usually mean quantum mechanics that uses the matrix representation that was started by Heisenberg.

[Hajime Tanaka]

[References] | Commutation relations | Heisenberg | Bohr | Quantum mechanics

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

量子力学では物理量が演算子になっている。この演算子を行列で表現すれば、物理量の関係や物理量の時間変化を与える力学の関係式は数学的には行列の方程式となる。このような行列表示をとった量子力学の形式を行列力学という。マトリックス力学ともよばれる。したがって、行列力学という特別の力学があるのではなく、量子力学の一つの表現形式である。

 ハイゼンベルクはN・H・D・ボーアの原子模型から出発して量子力学の基本式をみいだした。ボーアの原子模型では、まず水素原子内電子を電子の座標と運動量を用いて古典力学に沿って求め、この軌道のうちボーアの与えた条件、すなわち量子条件に従うとびとびのものを選び出し、これらの軌道を電子のとる定常状態とみなすことにした。次に、電子がこれら定常状態の間を移ることによって光を放射・吸収すると考えた。この場合、放射・吸収する光のエネルギーは、電子が移る定常状態間のエネルギーの差に等しくなる。

 ハイゼンベルクはこの事実に注目し、電子の座標qや運動量pは、時間の普通の関数でなく、任意の2組の定常状態mnで特徴づけられる要素q(m, n), p(m, n)の集まりとして扱うべきであると考えた。いいかえれば、座標qと運動量pをいずれも行列で表示すべきものであることを提起し、量子力学の基本式
  qppqiħ(ħはプランク定数hの1/2π)
で与えられる交換関係を導いた(1925)。このため行列力学といえば、ハイゼンベルクに始まる行列表現をとった量子力学をさすのが普通である。

[田中 一]

[参照項目] | 交換関係 | ハイゼンベルク | ボーア | 量子力学

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Training - Training

>>:  Matrix transformation

Recommend

Japan studies

...The Pacific War made the need for analysis of ...

time study

… Work study has existed throughout the history o...

Nakatonbetsu [town] - Nakatonbetsu

A town in Esashi County in northern Hokkaido. It o...

Kankijuin Temple

…Compared to other Empress's territories, thi...

Silver acetylide

Chemical formula: Ag 2 C 2 . Also known as silver ...

National Diet Library

This library was established in 1948 (Showa 23) w...

Provisional Ordinance on Government Forest Survey - Kanrincho Sakari Jorei

…In the early Meiji period, land disposal was car...

Sinan, Mimar

[Birth] Around 1490 Kayseri Died: July 17, 1588. A...

Koyukon

…(2) The Athabaskan people are an Indian tribe li...

Akhak gwebǒm (English)

A valuable commentary on Korean classical music. C...

Cenogenesis

…For example, the appearance of characteristics o...

Rugs - Shikimono

It means something placed underneath to prevent o...

Teika Style

The calligraphy style of Fujiwara Teika, a famous...

Intergovernmental Oceanographic Commission

...Therefore, in order to utilize the ocean, ocea...

Enrico Barone

Italian economist and military scholar. Born in N...