Let us call a proposition asserted without proof in a theory an axiom of that theory. The meaning of the words used to state these axioms is often clear depending on the context in which the theory is used. However, in mathematics, on the other hand, the meaning of these words is sometimes intentionally left undefined. For example, This is an axiom that states that the relationship R is reversible, but does not say anything about what specific relationship R represents. This axiom holds whether R is a sibling or is on the same plane. A little thought will reveal that this axiom holds for countless other relationships. In this way, by intentionally leaving the meaning of words indefinite, a set of axioms can be applied to many things, broadening the scope of applications of mathematics. Determining the meaning of these indefinite words in cases such as the application of a theory is called interpreting this set of axioms. In logic, there is a field that investigates the general theory of interpretation in this sense by applying set theory, which is called model theory. Particularly interesting is the model theory of set theory itself. In contrast to interpretation, expressing well-understood matters in the form of strict axiomatic theories using logical symbols is called "formalization." [Yoshida Natsuhiko] [Reference items] | | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
一つの理論で、証明なしに主張されている命題を、その理論の公理とよぶことにしよう。この公理を述べるのに使われている単語の意味は、その理論の使われる場面によって明らかであることも多い。しかし、数学などでは、逆に、この単語の意味をわざと不定にしておくこともある。たとえば、 このことは、Rという関係が、可逆的であることを述べている公理であるが、このRが具体的にどういう関係を表しているかについては何も述べてない。そうして、Rが兄弟関係であっても、「同一の平面上にある」という関係であっても、この公理は成り立つ。このほか、無数の関係についてこの公理が成り立つことは、少し考えてみれば明らかであろう。このように、わざと単語の意味を不定にしておくことで、一組の公理が多くの事柄に当てはまるようになり、数学の応用の範囲が広くなるということがあるのである。この不定なことばの意味を理論の応用の場合などに確定させることを、この公理の組の解釈という。 論理学には、この意味での解釈の一般論を、集合論を応用して調べる分野があり、これをモデル理論という。とくに興味深いのは、集合論自体についてのモデル理論である。解釈と反対に、意味のよくわかった事柄を論理記号を使って厳密な公理論の形に表すことを「形式化」という。 [吉田夏彦] [参照項目] | | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Reinterpretation of the Constitution - Kaishaku Kaiken
>>: Company agency - company agency
A type of explosiveless blasting method used in pl...
A perennial plant of the orchid family (APG class...
This is an old town in Sanbu County, occupying the...
A type of African-American popular music that was ...
A mistrial involving Jean Calas, a Protestant merc...
...In this example, + is 6 (- is 4), so no signif...
…The conduction velocity varies from cell to cell...
This is the general name for a large group of shel...
Born: September 21, 1787. [Died] August 21, 1868. ...
…However, unlike apples, the fruit is rarely eate...
...Currently, it refers to public forums such as ...
This temple is located in Nariai-ji, Miyazu City,...
...This view classified the Renaissance and Baroq...
[raw]? [Died]1720? English merchant and economist....
1599‐1641 Flemish painter. Also spelled Van Dyck. ...