… If f is a linear form, then f ( e i )=α i ∈ K , and for an element x = x 1 e 1 + … + x n en in V , f ( x )= x 1 f ( e 1 )+……+ x n f ( en ) =α 1 x 1 +……+α n x n . Thus, f can be expressed as a linear homogeneous formula in n variables over K. Generalizing this idea, a mapping f from the direct product V1 ×...× Vr of linear spaces V1 , ... , Vr over K to K , such that for each i , f ( a1 , ..., ai - 1 , αai + βbi , ai +1 , ..., ar) = αf(a1, ..., ai-1, ai, ai +1, ..., an ) + βf ( a1 , ... , ai - 1 , ai , ai +1 , ... , an ) is called a multilinear form. ... From [Linear Algebra]...Note that the linear spaces dealt with in linear algebra are not necessarily finite-dimensional, but the finite-dimensional case is fundamental. For example, 2 x 1 y 1 + 3 x 2 y 1 + 4 x 1 y 2 + x 2 y 2 is a linear homogeneous function in both x 1 and x 2 , and in both y 1 and y 2. When two sets of variables, such as ( x 1 , x 2 , ..., x n ) and ( y 1 , y 2 , ..., y n ), are both linear homogeneous, they are said to be bilinear. ... *Some of the terminology explanations that mention "linear equations" are listed below. Source | Heibonsha World Encyclopedia 2nd Edition | Information |
…fが線形形式ならば,f(ei)=αi∈Kであり,Vの元x=x1e1+……+xnenについて,f(x)=x1f(e1)+……+xnf(en)=α1x1+……+αnxnとなる。したがって,fはK上のn変数一次斉次式で表される。この考えを一般化して,K上の線形空間V1,……,Vrの直積V1×……×VrからKへの写像fで,各iについて,f(a1,……,ai-1,αai+βbi,ai+1,……,ar)=αf(a1,……,ai-1,ai,ai+1,……,an)+βf(a1,……,ai-1,ai,ai+1,……,an)が成立するものを多重線形形式という。… 【線形代数学】より…なお,線形代数で扱う線形空間は有限次元であるとは限らないが,有限次元の場合が基本的である。また,例えば,2x1y1+3x2y1+4x1y2+x2y2は,x1,x2についても,y1,y2についても一次斉次式である。このように2組のもの,例えば2組の変数(x1,x2,……,xn)と(y1,y2,……,yn)のいずれについても一次斉次式であるとき,これら2組のものについて双一次であるという。… ※「一次斉次式」について言及している用語解説の一部を掲載しています。 出典|株式会社平凡社世界大百科事典 第2版について | 情報 |
<<: Primary Sexual Characteristics
A deciduous shrub of the mulberry family, found in...
A series of popular uprisings in April 1960 that t...
Born: April 27, 1875 in Antwerp [Died] April 10, 1...
… [nature] The main allotropes are amorphous, mon...
Responsibility of a state under international law...
…The capital of the Republic of Chad in central A...
An operation that uses electroplating to precisel...
…South of the chernozem zone, in the dry steppe (...
...After the conquest, the Mamluk 'iqta was c...
...During this period, the centralized system of ...
...The theory that flying saucers are alien space...
...Anyway, by using methods (1) and (2), spiders ...
…American literary critic. In his major work, Com...
A district in the eastern part of Shinjuku Ward, ...
Although this name refers to the entire genus Narc...