…After Riemann, Riemannian geometry was studied by EB Christoffel (1829-1900) and CGRicci (1853-1925) as the theory of invariants of second-order differential forms, but in 1916, A. Einstein used it in his general theory of relativity, which brought it to much attention. Around that time, T. Levi-Civita (1873-1941) introduced the concept of parallel transport, and around 1920, E. Cartan developed it into the concept of connection, adding a geometric color to Riemannian geometry. In addition, since the only transformation that keeps length constant in Riemannian space is generally identity transformation, Riemannian geometry cannot be called geometry in the Kleinian sense, and the development of Riemannian geometry caused a breakdown in the idea of the Erlangen Program. … From the Three-Body Problem...This result suggested that even if a new integral exists, it would be analytically extremely complicated, and changed the course of research into the three-body problem. In other words, research in this century has been directed at the very existence of a solution to the three-body problem, and through Poincaré, Painlevé, T. Levi-Civita (1873-1941), G. Bisconcini, and others, KF Sundman (1873-1949) proved (1912) that a unique solution exists for any initial value as long as the three celestial bodies do not collide simultaneously. In such arguments, it is essential that the celestial bodies are point masses (because the force of gravity becomes infinity when a point mass collide). ... *Some of the terminology that mentions "Levi-Civita, T." is listed below. Source | Heibonsha World Encyclopedia 2nd Edition | Information |
…リーマン以後,リーマン幾何学はクリストッフェルE.B.Christoffel(1829‐1900),リッチC.G.Ricci(1853‐1925)らによって二次微分形式の不変式論として研究されたが,1916年,A.アインシュタインによって一般相対性理論に用いられて一躍注目を集めることとなった。そのころ,レビ・チビタT.Levi‐Civita(1873‐1941)は平行移動性の概念を導入し,20年ころE.カルタンはそれを接続の概念に発展させたことにより,リーマン幾何学に幾何学的色彩が加わった。なお,リーマン空間では長さを不変にする変換は一般に恒等変換しかないから,リーマン幾何学はクラインの意味での幾何学とはいえず,リーマン幾何学の発展はエルランゲン・プログラムの思想に破綻(はたん)を生ぜしめた。… 【三体問題】より…この結果は,たとえ新積分が存在してもそれは解析的にきわめて複雑な形であることを示唆したので,三体問題研究の流れを変えることになった。すなわち,今世紀になってからの研究は三体問題の解の存在そのものに向けられ,ポアンカレ,パンルベ,レビ・チビタT.Levi‐Civita(1873‐1941),ビスコンチニG.Bisconciniらを経て,スンドマンK.F.Sundman(1873‐1949)は3天体の同時衝突が起こらぬ限り,任意の初期値のもとに解が一意に存在することを証明した(1912)。このような議論では天体が質点であることが本質的である(質点の衝突で万有引力は∞になるから)。… ※「Levi-Civita,T.」について言及している用語解説の一部を掲載しています。 出典|株式会社平凡社世界大百科事典 第2版について | 情報 |
>>: Levinson, A.Ya. (English spelling) LevinsonAYa
A Jodo sect temple in Ochi, Nagano City. It is ca...
A protocol signed in Tokyo on April 25, 1898 betwe...
…It refers to a mixture of spices that is used ma...
1899‐1972 British biologist. Graduated from Morden...
…A year earlier, representatives of the world'...
A canal that connected the southwestern bank of La...
An industrial city in the center of North Gyeongsa...
Located on the eastern edge of the inner Suruga Ba...
A conductor from the former Yugoslavia. Born in C...
…However, the word has also been used in geograph...
A general term for sports in which two competitors...
...On the other hand, Italy also had a lineage th...
A type of court noble clothing. Hakama worn with ...
…He published Red Dust (1952), a collection of bi...
…Generally, it is understood as education that cr...