《Disquisitiones arithmeticae》 (English notation) Disquisitionesarithmeticae

Japanese: 《Disquisitiones arithmeticae》(英語表記)Disquisitionesarithmeticae
《Disquisitiones arithmeticae》 (English notation) Disquisitionesarithmeticae

…Legendre summarized the results of number theory known up to that point in his book Essai sur la théorie de nombre, from which the term number theory was derived. In 1801, Gauss's Disquisitiones arithmeticae was published, and number theory rose from its previous status of an accumulation of knowledge to a systematic field of mathematics. In this book, Gauss systematically describes the results of elementary number theory, then gives a general proof of the law of quadratic reciprocity, develops the theory of two-variable quadratic forms, and describes its application to quadratic indeterminate equations. In the final chapter, he discusses the cyclotomic equation x n -1 = 0, and states that for prime numbers of the form 2 n +1, it can be constructed as a regular p- gon. …

*Some of the terminology explanations that mention "Disquisitiones arithmeticae" are listed below.

Source | Heibonsha World Encyclopedia 2nd Edition | Information

Japanese:

…ルジャンドルは,それまでに知られていた整数論の結果を《Essai sur la theorie de nombre》という著書にまとめたが,この書名から整数論という名称がでてきた。 1801年にはガウスの《数論研究Disquisitiones arithmeticae》が出版され,整数論は,それ以前の知識の集積という状態から体系的な数学の一分野になった。この著書においてガウスは,初等整数論の結果を系統立てて述べた後,平方剰余の相互法則の一般的な証明を与え,二変数二次形式論を展開して,その二次の不定方程式への応用を述べ,最終章においては円分方程式xn-1=0について論じ,2n+1の形の素数に対しては,正p角形で作図可能であることを述べている。…

※「《Disquisitiones arithmeticae》」について言及している用語解説の一部を掲載しています。

出典|株式会社平凡社世界大百科事典 第2版について | 情報

<<:  dissected maps

>>:  Disputation

Recommend

Presbyterian Church - Chorouhakyokai

In English it is called the Presbyterian Church. I...

Achievement status - Gyoseki tekichichi

… Social resources are allocated based on people&...

Primary sensory cells

… [Sensory Reception Mechanism] Receptors (recept...

Campanula rotundifolia L.

A perennial herb of the Campanulaceae family that ...

Marseille soap - Marseille soap (English spelling)

The Marseille region produced a large amount of hi...

Gunto - Gunto

One of the publicly-distributed rice tributes und...

Technically-informed person

… However, in today's advanced industrial soc...

Paul Federn

1871‐1950 Austrian psychoanalyst. Jewish. Graduate...

Potential meter - Electrical meter

An instrument that measures the potential differe...

Goshun

Year of death: 17th July 1811 (4th September 1811)...

Elliot, C.

… [Outbreak of War] In March 1839 (the 19th year ...

Uppsala School

Also known as the Scandinavian School. It took a c...

"Enka Collection" - Kankashu

…He is also one of the most representative poets ...

Okawa Bridge - Okawabashi

Another name for Azuma Bridge, which spans the Sum...

Kurizaku Misono - Chestnut miso

In the Middle Ages, orchards that offered chestnut...