Along with intuitionism and formalism, this is a position that provides the foundations of mathematical foundations, a branch of mathematics. Following the discovery of the antinomy, or contradiction, in set theory, systematic research into the foundations of mathematics became active from the end of the 19th century to the beginning of the 20th century. However, this research was made possible by the background of symbolic logic, which had already been perfected by Frege and others at that time. In fact, Frege and his successor, B. Russell, experimentally demonstrated that classical mathematics, that is, ordinary mathematics, can be expressed in its entirety in symbolic logic (Principia Mathematica, 3 volumes). Frege and Russell went beyond this and proved that even the axioms of mathematics, such as the axioms of arithmetic, can be reduced to logic. For example, the natural number two is defined as a set of pairs. Since this kind of logic is nothing more than a kind of set theory, Frege and Russell's reduction of mathematics to logic is a reduction to set theory. And the foundation of mathematics from this standpoint is what is known as logicism. In response to logicism, intuitionism, which emphasizes structure, and formalism, which considers logic and mathematics to be the manipulation of meaningless symbols, emerged, and today few experts accept logicism in its true form. However, we cannot forget the role that logicism played in the foundations of mathematics. [Arata Ishimoto] [Reference item] |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
直観主義、形式主義とともに、数学の1分野である数学基礎論の基礎づけを行う一つの立場。集合論における二律背反、すなわち矛盾の発見を契機として、19世紀末から20世紀初頭にかけて、数学の基礎に関する組織的研究が盛んになってきた。しかしながら、こういった研究がともかく可能となったのは、フレーゲらによってその当時までにいちおう完成の域に達していた記号論理学という背景があった。実際、フレーゲとその後継者であるB・ラッセルによって、古典数学、つまり通常の数学があますところなく記号論理学で表されるということが、いわば実験的に示された(『数学原理』Principia Mathematica全3巻)。 フレーゲもラッセルもこれにとどまらず、算術の公理といった数学の公理まで論理学に還元できるということを証明した。たとえば、二という自然数は対(つい)の集合として定義される。このような論理学は一種の集合論にほかならないから、フレーゲやラッセルによる数学の論理学への還元は、集合論への還元ということになろう。そして、こういった立場からの数学の基礎づけがいわゆる論理主義なのである。 論理主義に対しては、その後、構成を重んじる直観主義、論理学や数学を意味のない記号の操作と考える形式主義が出現し、現在では、論理主義をそのままの形で認める専門家は少ない。しかし、論理主義が数学の基礎づけに果たした役割を忘れることはできない。 [石本 新] [参照項目] |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Tractatus Logico-Philosophicus (English: Tractatus Logico-Philosophicus)
>>: Logical positivism (English spelling)
...This genus is classified into about 24 species...
…After Kakabekia was reported as a fossil, prokar...
A city facing Hakata Bay in the northwest of Fukuo...
messenger ribonucleic acid (mRNA) Source: Morikit...
A general term for insects belonging to the Delph...
...These transactions between securities companie...
In the late Qing Dynasty and the Republic of China...
Tokai Sanshi's full-length novels. Eight stori...
This refers to the clearing of new land and the pa...
...The water surface of the upper three lakes of ...
A culture characterized by stone blade arrowheads,...
…Tungstate minerals are divided into the scheelit...
…It is more common in formula-fed infants than in...
1871 * - 1921 A lawyer, diplomat, and politician ...
...Fukuoka Mitsugu is played by Nakayama Bunshich...