In an n- th order linear differential equation, p 1 ( x ), …, p n ( x ) are continuous on a certain interval I. The determinant made from the n solutions y 1 ( x ), …, y n ( x ) of (1) is called the Wronskian of those solutions, or the determinant of [H. J. M. Wronski (1778-1853)]. Regarding this, for any x 0 , x included in I , the following relationship holds. From this, it can be seen that if the Wronskian is 0 for a certain x , then it is in fact identically 0. Source: Heibonsha World Encyclopedia, 2nd Edition Information |
n階線形微分方程式,においてp1(x),……,pn(x)はある区間Iで連続とする。(1)のn個の解y1(x),……,yn(x)から作られる行列式,をそれらの解のロンスキアン,または[ロンスキH.J.M.Wronski(1778‐1853)]の行列式という。これについては,Iに含まれる任意のx0,xに対し,という関係が成り立つ。このことからロンスキアンがあるxに対して0となれば,じつは恒等的に0であることがわかる。
出典 株式会社平凡社世界大百科事典 第2版について 情報 |
...A perennial herb of the Saxifragaceae family t...
...It is a pentaploid plant, and its distribution...
→Chiesel Source : Heibonsha Encyclopedia About MyP...
…It also has a strong character as a comprehensiv...
...Mountain azaleas have medium-sized or small fl...
...An annual plant of the Violaceae family (illus...
A leading school of swordsmanship in the early mo...
Permian shale rich in heavy metals found in centra...
Rakugo performer. His real name was Izubuchi Jiro...
Born: November 12, 1755 Bordenau [Died] June 28, 1...
[1] A mountain on the border between Yasu City and...
A sport that originated in the United States. One...
This natural park is located in the western part o...
Year of death: May 13, 1635 (June 27, 1635) Year o...
Dicotyledonous, polypetalous. A climbing perennia...