Simultaneous Equations - Simultaneous Equations

Japanese: 連立方程式 - れんりつほうていしき
Simultaneous Equations - Simultaneous Equations

When there is a set of equations containing two or more unknowns (multiple equations), and unknowns represented by the same letter have the same value in each equation, the set of equations is called a simultaneous equation, and the set of unknown values ​​that make all the equations true simultaneously is called the solution (root) of the simultaneous equations, and finding all the solutions (solution set) is called solving the simultaneous equations. When each equation is linear, it is called a simultaneous linear equation, and when each equation is quadratic (or may include linear), it is called a simultaneous quadratic equation.

[Yoshio Takeuchi]

Solution of simultaneous linear equations with two unknowns


2x+3y=7……〔1〕
3x-4y=2……〔2〕
(1) Equivalence method: Solve [1] and [2] for x, set them equal, and solve the equation for y.

Solving this gives us y = 1. Substituting this value into [1] gives us x = 2.

(2) Substitution method: Substitute the value of x obtained from [1] into x in [2] to solve the equation for y.

is obtained, and solving this gives y=1.

(3) Addition and Subtraction To make the coefficient of y uniform, multiply both sides of [1] and [2] by 4 and 3 respectively, and add the sides together to get 17x = 34, from which we get x = 2.

All of the above methods involve eliminating one unknown and creating an equation with the other unknown. This is called eliminating the unknown from [1] and [2] (the elimination method). The method of solving general simultaneous linear equations is closely related to the theory of determinants and matrices. It is said that the origin of determinant theory lies in the method of solving simultaneous linear equations. For the geometric meaning of the solution of simultaneous equations, and the indeterminate and impossible solutions, please refer to the "Linear Equations" entry.

[Yoshio Takeuchi]

Solving simultaneous quadratic equations with two unknowns

The general form of a quadratic equation with two variables is ax 2 +bxy+cy 2 +ex+fy+g=0
There are two types: (a) quadratic and linear, and (b) quadratic and quadratic. In the case of (a), by solving the linear equation for, say, x, and substituting this for x in the quadratic equation, we obtain a quadratic equation for y. In the case of (b), (a) one of the quadratic equations can be factorized into linear expressions for x and y, and (b) neither can be factorized. In the case of (a), it reduces to the above-mentioned case of (a). In the case of (b), there is no general method, and even if elimination is used, it becomes a quartic equation, which is complicated. Geometrically, the solution is the coordinates of the intersections of the two quadratic curves (generally four points). An approximate solution can be obtained by using a graph of the equation, which is practical.

[Yoshio Takeuchi]

[Reference item] | Linear equation

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

二つ以上の未知数を含む方程式(多元方程式)の組があって、同じ文字が表す未知数は各方程式において同じ値をとるものとするとき、これら方程式の組を連立方程式といい、すべての方程式を同時に成り立たせる未知数の値の組を、連立方程式の解(根(こん))といい、すべての解(解集合)を求めることを連立方程式を解くという。各方程式が一次であるものを連立一次方程式、各方程式が二次(または一次を含んでよい)であるものを連立二次方程式という。

[竹内芳男]

連立二元一次方程式の解法


  2x+3y=7……〔1〕
  3x-4y=2……〔2〕
(1)等置法 〔1〕〔2〕をたとえばxについて解き、それらを等しいと置いて、yの方程式

を得る。これを解けばy=1である。この値を〔1〕に代入してx=2が得られる。

(2)代入法(置換法) 〔1〕から得たxの値を〔2〕のxに代入してyの方程式

が得られ、これを解いてy=1を得る。

(3)加減法 yの係数をそろえるために〔1〕〔2〕の両辺をそれぞれ4倍、3倍して、辺々を加えると17x=34となり、これからx=2が得られる。

 以上の方法はいずれも一つの未知数を追い出して、他の未知数の方程式をつくることである。これを〔1〕〔2〕から未知数を消去するという(消去法)。一般の連立一次方程式の解法と行列式や行列の理論は密接に関連する。行列式論の起源は、連立一次方程式の解法にあるといわれている。なお連立方程式の解の幾何学的意味や、解の不定、不能については「一次方程式」の項目を参照されたい。

[竹内芳男]

連立二元二次方程式の解法

二元二次方程式の一般形は
  ax2+bxy+cy2+ex+fy+g=0
である。類型は(a)二次と一次、(b)二次と二次の2種である。(a)の場合は一次方程式から、たとえばxについて解き、これを二次方程式のxに代入すれば、yについての二次方程式が得られる。(b)の場合は(イ)一方の二次方程式の二次式がx、yの一次式に因数分解されるときと、(ロ)どちらも因数分解されないときに分けられる。(イ)の場合は前述の(a)の場合に帰着される。(ロ)の場合は一般的な方法はなく、消去法を用いても四次方程式になり、複雑である。幾何学的には、二つの二次曲線の交点(一般に4点)の座標が解である。方程式のグラフを利用すれば、近似解が得られ、実用的である。

[竹内芳男]

[参照項目] | 一次方程式

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  The Fortune Tree

>>:  Simultaneous quadratic equations

Recommend

Livy (English spelling) Titus Livius

A historian of ancient Rome. He was born in Patav...

Erkki Itkonen (English spelling)

1913‐1992 Finnish Finno-Ugric scholar. Born on the...

Gyokuheishou

...There are dongxiao of various lengths, but unl...

Ethynylbenzene

…Ethynylbenzene is also known as ethynylbenzene. ...

Carlos IV

1748‐1819 King of Spain. Reigned 1788-1808. Second...

Gouché - Gouché

... In Iranian music, the concept of dastgāh is c...

Amplitude shift keying

…There is also a method called vestigial sideband...

Oigami [Hot Spring] - Oigami

A hot spring on the banks of the Katashina River i...

Franken - Franken (English spelling)

The name of a region in central Germany. Refers t...

Usui Road

...A town in Ashigarashimo County, in the southwe...

Self-governance

Generally, it means that a person or group handle...

Ai no mono - Ai no mono

…(1) In Noh, it refers to the part in which the k...

Wunderlich

German tenor. Born in Kusel, Rhineland-Palatinate,...

Verbena venosa (English spelling) Verbena venosa

… [Munemin Yanagi]. … *Some of the terminology th...

Salmonellosis - Salmonella

One of the three major bacterial food poisonings. ...