Binary star

Japanese: 連星 - れんせい(英語表記)binary star
Binary star

A binary system is a system in which two stars are attracted to each other by the force of gravity and orbit around a common center of gravity. In addition, when three or more stars orbit, they are called triple or quadruple binaries, depending on the number of stars, and are generally called multiple binaries. In binaries, a close binary system is one in which the two stars are close enough to affect the atmosphere, outer structure, internal structure, and evolution of the other star, while a distant binary system is one in which the stars are simply connected by the force of gravity and are indistinguishable from each other. In addition, binaries can be divided into visual binaries, spectroscopic binaries, and eclipsing binaries depending on how they are seen. Generally speaking, visual binaries are distant binaries, and spectroscopic and eclipsing binaries are close binaries. Since the 1980s, stellar observations using high-angle resolution interferometers have progressed, making it possible to separate binaries that were previously difficult to separate, and many binaries have been discovered.

Among all stars, binaries (including multiple binaries) are surprisingly common: 65% of first magnitude stars are in some kind of binary system, and at least 63% of stars within 17 light years of the Sun are in binary systems. Roughly speaking, more than 60% of stars are binary systems. Close binaries, which affect the evolution of the other star, are less common, but close binaries are the cause of many unusual objects. For example, close binaries include A-type metallic line stars (chemically peculiar stars) with unusually strong metallic line spectra, contact binaries of the W Ursae Majoris type in which two stars truly orbit each other, RS Canes Venatici type binaries that show activity orders of magnitude greater than solar activity, cataclysmic variables such as novae that suddenly become tens of thousands of times brighter and dwarf novae of the U Gemini type that frequently increase in brightness, binaries between white dwarfs with an orbital period of just five minutes, X-ray binaries that emit strong X-rays, binary pulsars in which one star is a pulsar (neutron star) and the other star is also a white dwarf or neutron star, SS433, which ejects gas bipolarly at a quarter of the speed of light, black hole binaries, and Type Ia supernovae in which a white dwarf star within a binary system explodes into a supernova. Observationally, the brighter of the two stars that make up a binary system is called the primary star and the dimmer one is called the companion star. However, when their masses are known or in the case of theoretical research into binary systems, the one with the greater mass is sometimes called the primary star and the one with the lesser mass is called the companion star.

[Atsuo Yamazaki]

Visual binary

A visual binary is a binary system in which two stars appear separate when viewed through a telescope. The positions of the two stars change over time as they orbit around a common center of gravity. The orbital period can be as short as a few years, or as long as hundreds of years. If the orbit of the binary system and the distance to the binary system are known, the mass of the star can be calculated from the semi-major axis and orbital period using Kepler's third law. This is the only way to directly determine the mass of a star. For example, Sirius is a visual binary system with a white dwarf of magnitude 8.4, and they orbit around their common center of gravity with an orbital period of 50.05 years. From orbital analysis, we know that Sirius has a mass 2.1 times that of the Sun, and the white dwarf has a mass 1.03 times that of the Sun. Even if the orbital period is too long and the apparent position has hardly changed so far, if the two stars show the same proper motion, they can be considered to be a binary system. For example, the closest stars to our solar system, Proxima Centauri and Alpha Centauri, are thought to be a binary star system with an orbital period of more than 400,000 years.

[Atsuo Yamazaki]

Spectroscopic Binary Stars

A spectroscopic binary is one that can be identified by the periodic movement of its spectral lines due to the Doppler effect caused by changes in radial velocity caused by orbital motion. In 1889, Pickering discovered that the primary star of the visible binary Mizar was also a spectroscopic binary, the first such discovery. The orbital periods of spectroscopic binaries vary widely, from less than a day to more than 10 years. In most cases, only the spectrum of the primary star is visible. For those in which the spectra of both stars are visible, the orbit and mass of the binary can be determined by determining the inclination of the orbital plane using another method. For example, Spica is a spectroscopic binary with an orbital period of 4.01 days, and both spectra are visible. Analysis of the orbits reveals that the masses of the two stars are 11 and 7 times that of the Sun.

[Atsuo Yamazaki]

Eclipse Binary

When two stars in a binary system revolve around their common center of gravity, they sometimes obscure the other star as seen from Earth, and the entire system appears dark during that time. Such a binary system is called an eclipsing binary system. There is no essential difference between eclipsing binaries and spectroscopic binaries; they are only discovered by different observational means. The first eclipsing binary system discovered was Algol, by John Goodricke (1764-1786) in 1782. The variation in light of an eclipsing binary system allows us to determine the inclination of the orbital plane, the relative size and luminosity of each star, and other information. Most eclipsing binaries are also spectroscopic binaries, so by combining the information from each, we can study the properties of the binary system in detail.

[Atsuo Yamazaki]

Multiple Binary Stars

A well-known multiple binary star is Alpha Gemini (Castor). Castor is a visual binary star consisting of two second magnitude stars with an orbital period of 420 to 500 years and an orbital semi-major axis of 6.3 arcseconds. A ninth magnitude flare star (a star that brightens irregularly like a flash) orbits 73 arcseconds away from them. Each of these three stars is a spectroscopic or eclipsing binary star, making it a sextuplet binary star consisting of six stars in total. It is thought that for three or more stars to form a stable multiple binary star, pairs of stars close to each other must successively form binaries.

[Atsuo Yamazaki]

Binary stars seen with an interferometer

There are two types of optical and infrared interferometry: speckle and optical infrared interferometry. In ground observations, if the observation time is longer than the time it takes for the Earth's atmosphere to sway, the image of the celestial body will be blurred due to atmospheric turbulence. However, if many images of the celestial body are taken in a time shorter than the time it takes for the atmosphere to sway and statistically processed, a correct image that is not affected by atmospheric turbulence can be reproduced. This is called the speckle method. On the other hand, the angular resolution of a telescope is about the size of the wavelength of light divided by the aperture of the telescope. To obtain high angular resolution, the aperture of the telescope needs to be large. Therefore, if the same celestial body is observed with two or more telescopes separated from each other and the phases are aligned, it will be as if it were observed with one large-aperture telescope. In other words, by precisely aligning the propagation path length of each telescope and causing mixed interference to create interference fringes, and analyzing these, a high-angle resolved image of the original celestial body can be obtained. This is called optical infrared interferometry. Using speckle and optical/infrared interferometry, it is now possible to observe binaries with a much higher angular resolution than conventional visual binary observations. Since the images of each of the two stars in a binary system are resolved, the angular distance, direction, and luminosity difference between the two stars can be determined. Furthermore, for spectroscopic binaries, the masses of the two stars can be determined from their radial velocities.

[Atsuo Yamazaki]

"Gravity: The Mystery of the Force that Controls the Universe" by Jayant V. Narlikar, translated by Nakamura Koichi (1986, Nikkei Science Publishing)""This is How the Universe Works: A Spaceship Journey from the Solar System to Deep Space" by the Sunday Edition Editorial Department of the Yomiuri Shimbun (1988, Tokuma Shoten)""Binary Stars: Photometric Binary Star Theory" by Kitamura Masatoshi (1992, Goto Shobo) ▽ "Understanding the New Universe: Modern Astronomy Exercises" edited by Yokoo Takeo (1993, Kouseisha Kouseikaku)""Astrophysics Simulations" by J.M. Anthony Danby et al., translated by Yamamoto Kikuo (1996, Kaibundo Publishing)" ▽ "Rainbow-Colored Messages from the Sky: The Cosmic Spectrum Museum, Visible Light Edition" by Awano Tomomi, Tajima Yukiko, Tanabe Kazuhito, Norimoto Yuji, and Fukue Jun (2001, Shokabo Publishing)""How to Walk the Invisible Universe: From Black Holes to Neutrinos" by Jun Fukue (PHP Shinsho)

[References] | Algol | Castor | Kepler's law | Stars | Stellar interferometer | Orbit | Radial velocity | Multiple stars | Eclipse | Sirius | Novas | Spica | Spectra | Neutron stars | Supernovae | Peculiar stars | Doppler effect | White dwarfs | Pulsars |Universal gravitation | Pickering | Black holes | Variable stars
Alpha Canes Venatici
A visible binary star system also known as Cor Caroli ©National Astronomical Observatory of Japan ">

Alpha Canes Venatici


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

二つの恒星が万有引力で互いに引き合って、共通重心の周りを軌道運動しているものをいう。また、三つ以上の恒星が軌道運動しているものをそれぞれ星の個数に応じて三重連星、四重連星などとよび、一般に多重連星という。連星において、互いの星が相手の星の大気や外層の構造、内部構造や進化に影響を与えるほど接近した連星を近接連星といい、単に万有引力で結び付いているだけでそれぞれの星は単独の星と違わない離れた連星を遠隔連星とよぶ。また、連星は見え方の違いによって実視連星、分光連星、食連星などに分けられる。概して、実視連星は遠隔連星、分光連星・食連星は近接連星といえる。また1980年代以降、高角度分解能干渉計による恒星の観測が進み、これまで分離がむずかしかった連星も分離できるようになり多数の連星が発見されている。

 すべての恒星のなかで、連星(多重連星を含む)は意外に多く存在しており、たとえば1等星については65%がなんらかの連星であり、また太陽から17光年までの星では少なくとも63%が連星である。大まかにいって60%以上の星が連星であるといってよい。相手の星の進化に影響を与える近接連星の頻度はこれより少ないが、特異な天体のなかには近接連星であることが原因となっているものも多い。たとえば、金属の線スペクトルが異常に強いA型金属線星(化学特異星)、二つの星が本当にくっつきあって公転しているおおぐま座W星型の接触連星、太陽活動を桁(けた)違いに大きくした活動を示すりょうけん座RS星型の連星、突然数万倍も明るくなる新星や頻繁に増光を繰り返すふたご座U星型の矮新星(わいしんせい)などの激変星、公転周期わずか5分の白色矮星どうしの連星、強いX線を放射するX線連星、一方の星がパルサー(中性子星)で相手の星も白色矮星か中性子星の連星パルサー、光速の4分の1という速度でガスを双極的に噴出しているSS433、ブラック・ホール連星、連星内の白色矮星が超新星爆発するⅠa型超新星など、単独の星ではけっしておきない現象が近接連星ではおこっている。観測的には連星を構成する二つの星のうち、光度の明るいほうを主星、暗いほうを伴星とよぶが、質量がわかっているときや連星の理論的研究の場合などでは質量の大きいほうを主星、小さいほうを伴星ということがある。

[山崎篤磨]

実視連星

実視連星とは、望遠鏡で見たときに2星が分離して見える連星のことで、両星が共通重心の周りを公転するため、時間とともに星の位置が変化する。公転周期は短くて数年、長いものは数百年以上に及ぶ。連星の軌道と連星までの距離がわかれば、ケプラーの第三法則を使って、軌道長半径と公転周期より恒星の質量を求めることができる。これは恒星の質量を直接決めることのできる唯一の方法である。たとえばシリウスは8.4等の白色矮星と実視連星をなしており、公転周期50.05年で共通重心の周りを回っている。軌道の解析からシリウスの質量は太陽の2.1倍、白色矮星は太陽の1.03倍とわかる。公転周期が長すぎてこれまで見かけの位置がほとんど動いていないものでも、両星が同じ固有運動を示すものは連星と考えてよい。たとえば太陽系にもっとも近い恒星ケンタウルス座プロキシマ星(プロキシマ・ケンタウリ)とα(アルファ)星は公転周期40万年以上の連星と考えられている。

[山崎篤磨]

分光連星

分光連星とは、軌道運動による視線速度の変化のためスペクトル線の位置がドップラー効果により周期的に動くことによって連星とわかるものをいう。1889年にピッカリングは実視連星ミザールの主星がまた分光連星でもあることをみいだしたが、これが分光連星の最初の発見であった。分光連星の公転周期は1日以下から10年以上と幅広く分布する。大部分が主星のスペクトルしか見えていない。両方の星のスペクトルが見えているものについては、別の方法で公転軌道面の傾きがわかれば、連星の軌道や質量を知ることができる。たとえばスピカは公転周期4.01日の分光連星であり、両方のスペクトルが見えている。軌道の解析により両星の質量は太陽の11倍と7倍とわかる。

[山崎篤磨]

食連星

連星の2星が共通重心の周りを回るとき、ちょうど地球から見て相手の星を隠したり相手の星から隠されたりして、連星全体がその間暗くなって見えることがある。このような連星を食連星という。食連星と分光連星の間には本質的な違いはなく、ただ発見される観測手段が違うだけにすぎない。最初に発見された食連星はアルゴルで、1782年、グドリックJohn Goodricke(1764―1786)による。食連星は、変光のようすから公転軌道面の傾きやそれぞれの星の相対的な大きさや光度などがわかる。食連星のほとんどは分光連星でもあるので、それぞれの情報をあわせると連星の性質を詳しく調べることができる。

[山崎篤磨]

多重連星

多重連星としてはふたご座のα星(カストル)が有名である。カストルは二つの2等星が周期420~500年で軌道長半径6.3秒角の実視連星をなしており、そこから角度で73秒離れたところに9等のフレア星(不規則に閃光(せんこう)的に明るくなる星)が回っている。この三つの星はそれぞれが分光連星や食連星であり、総計六つの星からなる六重連星である。三つ以上の星が安定した多重連星をつくるには、近接した星の対が順次連星を構成していく必要があると考えられている。

[山崎篤磨]

干渉計で見た連星

光赤外における干渉法には、スペックル法や光赤外干渉法がある。地上観測では、地球大気が揺らぐ時間より長い時間観測すると大気のゆらぎによって天体の像はぼやけてしまうが、大気が揺らぐ時間より短い時間で天体の像を多数撮影し統計処理を行うと、大気ゆらぎの影響を受けない正しい像を再現することができる。これをスペックル法という。一方、望遠鏡の角分解能は、光の波長を望遠鏡の口径で割った程度の大きさである。高角分解能を得るには望遠鏡の口径を大きくする必要がある。そこで、離れた二つ以上の望遠鏡で同一の天体を観測し位相をあわせると、あたかも一つの大口径望遠鏡で観測したことと同じようになる。つまり各望遠鏡の伝搬路長を精密にあわせ混合干渉させて干渉縞(じま)をつくりそれを解析すると、もとの天体の高角分解された像を得ることができる。これを光赤外干渉法という。このようなスペックル法や光赤外干渉法により、従来の実視連星観測より飛躍的に角度分解能を高めた連星の観測が行われている。連星の二つの星はそれぞれ星像が分解されて観測されるので、両星の角距離、方向、光度差が求められる。さらに分光連星であれば視線速度より2星の質量が求められる。

[山崎篤磨]

『ジャヤント・V・ナーリカー著、中村孔一訳『重力――宇宙を支配する力の謎』(1986・日経サイエンス社)』『読売新聞日曜版編集部著『宇宙はこうなっている――宇宙船の旅・太陽系から深宇宙まで』(1988・徳間書店)』『北村正利著『連星 測光連星論』(1992・ごとう書房)』『横尾武夫編『新・宇宙を解く――現代天文学演習』(1993・恒星社厚生閣)』『J・M・アンソニー・ダンビーほか著、山本菊男訳『宇宙物理学シミュレーション』(1996・海文堂出版)』『粟野諭美・田島由紀子・田鍋和仁・乗本祐慈・福江純著『天空からの虹色の便り――宇宙スペクトル博物館 可視光編』(2001・裳華房)』『福江純著『「見えない宇宙」の歩き方――ブラックホールからニュートリノまで』(PHP新書)』

[参照項目] | アルゴル | カストル | ケプラーの法則 | 恒星 | 恒星干渉計 | 公転 | 視線速度 | 重星 | | シリウス | 新星 | スピカ | スペクトル | 中性子星 | 超新星 | 特異星 | ドップラー効果 | 白色矮星 | パルサー | 万有引力 | ピッカリング | ブラック・ホール | 変光星
りょうけん座α星
コル・カロリともよばれる実視連星©国立天文台">

りょうけん座α星


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Connecting rod

>>:  Leinster; Laigin

Recommend

Sand fly (stinging butterfly fly)

A general term for insects belonging to the Dipter...

Akan language - Akango

…Official name: Republic of Côte d'IvoireRépu...

Cotton Belt

A belt-like region in the southern United States w...

engagement

…In Peru in the second half of the 19th century, ...

Ibbi-Sin (English spelling)

...Later, his son (or brother) Ur-Nammu gained in...

Barabinskaya step'

A vast grassland located in southwestern Siberia, ...

Enchytraeidae

...There are several other species, but none of t...

Dubois, A.

…Antoine Caron (c. 1520-c. 1600), who worked unde...

Narendranāth Datta (English spelling)

…An outstanding religious figure in modern India....

symphonic orchestra

...used in contrast to small-scale chamber music ...

Kinsei ruins

<br /> The remains of a settlement in Oizumi...

Monotonous labor - Tanchouroudou

It refers to work that is extremely repetitive in ...

Phyllis

…In the legend of Tannhäuser, when he came to con...

Abenotori - Abenotori

Year of birth: Unknown An official from the early ...

Cartayac, E. - Cartayac

…The murals were discovered in 1879, along with s...