Fluid mechanics

Japanese: 流体力学 - りゅうたいりきがく(英語表記)fluid mechanics
Fluid mechanics

Liquids and gases are collectively called fluids, and the study of their movement is called fluid mechanics. When the study focuses on fluids in a stationary state, it is called hydrostatics. This includes Archimedes' principle of buoyancy and Pascal's principle, which provides the basis for hydraulic machines. In contrast, when the study focuses on fluids in motion, it is called hydrodynamics.

[Imai Isao]

Establishment of fluid mechanics

Although basic knowledge of fluid mechanics has been accumulated since ancient times from practical applications such as waterways, waterworks, and fountains, it was not until the 18th century that the academic system of fluid mechanics was established, when the equations of motion for perfect fluids were established by D. Bernoulli and Euler in Switzerland, and Lagrange in France. In the mid-19th century, the equations of motion for viscous fluids were proposed by Navier in France and Stokes in England, and the foundations of fluid mechanics were established. In 1880, the concept of turbulence was introduced by Reynolds in England, and in the 20th century, the modernization of fluid mechanics began with the presentation of boundary layer theory by Prandtl in Germany. This, combined with the birth of the airplane by the Wright brothers in the United States, gave birth to a new field called aerodynamics, and a dramatic advancement in fluid mechanics began. From the 1930s, high-speed fluid mechanics was developed in response to the increasing speed of airplanes, and subsonic, transonic, and supersonic fluid mechanics were established around the time of World War II. Furthermore, the appearance of space rockets promoted hypersonic flows and rarefied gas mechanics. Meanwhile, research has been conducted into fluid dynamics, including thermal phenomena and chemical reactions related to internal combustion engines and turbines, and magnetohydrodynamics has emerged in connection with nuclear fusion reactors. Fluid dynamics research into wave phenomena has been conducted for applications to ships, which is also related to marine engineering. The fluid dynamics of atmospheric phenomena such as the generation and progression of typhoons is also important. While these diverse new fields are being developed, research into turbulent phenomena is currently progressing steadily as the foundation of fluid mechanics.

[Imai Isao]

Flow field

A minute part of a fluid is called a fluid particle. From the viewpoint of fluid mechanics, which regards a fluid as a continuous object, the fluid is considered to be composed of these fluid particles. Each fluid particle moves with a translational velocity v and rotates with an angular velocity Ω . This translational velocity v is the velocity at each point of the fluid. Now, starting from a fluid particle at point P, if you connect adjacent fluid particles in the direction of velocity v , you will get a curve. This is called a streamline that passes through point P. A streamline is a curve that shows the direction of the flow velocity at each point on it. If you take a closed curve C and draw streamlines that pass through each point on it, a tube with those streamlines as walls is created. This is called a flowtube. The fluid appears to be flowing inside the flowtube. A flow that does not change over time is called a steady flow. In a steady flow, the fluid particles move along the streamlines, so if you pour a dye into the fluid, you can observe the streamlines. In an unsteady flow, the trajectories of the particles do not coincide with the streamlines.

When adjacent fluid particles have different velocities, the particles rotate. Their angular velocity Ω is

where ω is called the vorticity. Starting from a fluid particle at point P, the curve obtained by connecting successive points in the direction of the rotation axis, i.e., the direction of the vorticity vector, is called a vortex line passing through P. Also, a tube whose walls are vortex lines passing through each point on a small closed curve is called a vortex tube. The fluid part inside a vortex tube of infinitesimal cross-sectional area is called a vortex filament. There is a relationship between the flow velocity v and the vorticity ω.

Here, C is an arbitrary closed curve, and S is a surface whose edge is C. Γ ( C ) is called the circulation along C , and represents the total number of vortex lines passing through C. When ω = 0, the flow is called "vortex-free," and when ω ≠ 0, the flow is called "vortex-present." In a vortex-free flow, the flow velocity is expressed as v = grad Φ , where Φ is called the velocity potential. Fluid particles generally change volume and shape over time. Their expansion velocity is Θ = div v , and the deformation velocity is given by the tensor e ik = ∂ v i /∂ x k + ∂ v k /∂ x i . At a given moment, a spherical fluid particle rotates with an angular velocity of ω/2, moves with a translational velocity v , and is deformed into an ellipsoid while expanding or contracting with an expansion velocity of Θ .

[Imai Isao]

Fundamental Equations of Fluid Mechanics

To fully describe the state of flow, it is necessary to know the flow velocity v at each point in the fluid as well as other physical quantities such as pressure p , density ρ, and temperature T. As a natural phenomenon, the movement of fluids is governed by the laws of conservation of mass, momentum, and energy. The fundamental equations of fluid mechanics express this mathematically. First, the law of conservation of mass is as follows:

This is expressed by the differential equation. This is called the continuity equation. Next, the law of conservation of momentum is

Here, D / Dt is called the Lagrangian derivative and represents the change over time associated with the motion of fluid particles. Therefore, Dv / Dt is the acceleration. K is the external force acting per unit mass of the fluid, and p ik is the stress tensor. (2) is an equation of motion for any continuous object, not just fluids, but for real fluids, the stress tensor p ik is expressed as a linear equation of the deformation rate tensor e ik as follows:
p ik = - p δ ikΘ δ ike ik (3)
It is often expressed in the form. The proportionality coefficients μ and λ are called the viscosity coefficient and the second viscosity coefficient, respectively. Furthermore, μ' = λ + (2/3)μ is called the bulk viscosity coefficient. Usually, it is assumed that μ' = 0. This is called Stokes' assumption. Fluids for which the relationship (3) holds are called Newtonian fluids, and fluids for which it does not hold are called non-Newtonian fluids. Examples of the latter include solutions of polymers and colloids. Substituting (3) into (2) gives

is the equation of motion for a viscous fluid, and is called the Navier-Stokes equation.

The continuity equation (1) can also be expressed in the form D ρ/ Dt + ρdiv v = 0. For a "non-shrinking fluid" such as a liquid, D ρ/ Dt = 0, so (1) can be simplified to div v = 0. In this case, the flow velocity v and pressure p are completely determined by the continuity equation and the Navier-Stokes equations alone. For a "shrinking fluid" such as a gas, density ρ is also a variable, so other conditions must be considered. To do this, it is necessary to use the equation derived from the law of conservation of energy:

In other words, it is the energy equation. Here, T is temperature, S is entropy (per unit mass), Q is heat source (per unit volume), and q is heat flow. Φ means that the kinetic energy of the fluid is lost due to viscosity and heat is generated (per unit volume), and is called the dissipation function.

[Imai Isao]

Perfect Fluid Motion

For a perfect fluid, i.e., a fluid with no viscosity, the equation of motion (2) is

This is called Euler's equation of motion. In addition, instead of the energy equation (5), it is often assumed that a functional relationship ρ = f ( p ) specific to the state of motion of the fluid holds between density ρ and pressure p . This type of hypothetical fluid is called a barotropic fluid. In a barotropic fluid, when the external force is a conservative force ( K = -grad Ω ), the equation of motion (5) becomes

From this we obtain Bernoulli's theorem ( H is constant along streamlines and vortex lines in steady flow), the pressure equation (∂ Φ /∂ t + H = f ( t ) in vortex-free flows), Lagrange's theorem of the immortality of vortices, Helmholtz's vortex theorem (the strength of a vortex filament, i.e., vorticity x cross-sectional area, is constant throughout its length and does not change with time), and Kelvin's circulation theorem (the circulation along a closed curve composed of fluid particles is constant with time).

For a vortex-free flow of a non-contracting fluid, the continuity equation (1) becomes Laplace's equation for the velocity potential Φ , ΔΦ = 0. By solving this, the flow velocity v = grad Φ , the pressure p can be found from the pressure equation, and the force acting on an object placed in the flow can be obtained by calculating the resultant pressure force acting on the object's surface. This leads to d'Alembert's paradox, which states that "an object moving at a uniform speed through a perfect fluid at rest faces no resistance." For a contracting fluid, the equation for Φ becomes more complex. However, especially when the deviation from the equilibrium state is small, it can be approximated by the wave equation

The phenomenon of sound waves is discussed based on this. c is the speed of sound. Generally, the ratio M = U / c of ​​the flow velocity U to the speed of sound is called the Mach number, and a flow where M < 1 is called subsonic, and a flow where M > 1 is called supersonic. A flow where subsonic and supersonic regions coexist is called transonic. In supersonic flows, shock waves generally appear. These are a type of intense sound wave on the surface where the speed, density, pressure, temperature, etc. change discontinuously.

[Imai Isao]

Viscous Fluid Motion

For non-shrinking fluids, div v = Θ = 0, with l being the representative length representing the flow, U being the flow velocity, and ρ being the fluid density, the Navier-Stokes equations (4) can be expressed in a dimensionless form as Dv / Dt = K - grad p + R -1 Δ v . However, R = ρ Ul /μ is a dimensionless number called the Reynolds number. For two flows whose boundary shapes are similar, in order for the entire flow field to be similar, the R of both must be the same. This is called Reynolds' law of similarity.

Since the acceleration Dv / Dt = ∂ v / ∂ t + ( v・grad) v includes a quadratic term with respect to the flow velocity v , (4) is a nonlinear equation and is difficult to handle mathematically. When R is small, an approximation is made in which ( v・grad) v is ignored or substituted with Uv / ∂ x . The former is called Stokes' approximation and the latter Ossen's approximation. For flows with large R , if the viscosity term R -1 Δ v is ignored, it becomes Euler's equation of motion for a perfect fluid. However, a thin layer with a large velocity gradient appears on the surface of the object. This is called the boundary layer. If the x- axis is taken along the surface, the equation is

Here, u is the x component of v . This is called the Prandtl boundary layer equation.

In high-speed airflow, the effects of compressibility (density change) and viscosity appear simultaneously. In this case, it is necessary to consider the generation of frictional heat due to viscosity. Flows with M > 5 or higher are called hypersonic flows, in which the shock wave from the tip of an object becomes integrated with the boundary layer that covers the surface of the object.

[Imai Isao]

"The Science of Flow, by A.H. Shapiro, translated by Imai Isao (1977, Kawade Shobo Shinsha)""Revised Edition, The Science of Flow, by Kimura Ryuji (1985, Tokai University Press)" ▽ "Fantasy of Flow: The World of Fluids Captured in Photographs, edited by the Society for Flow Visualization (1986, Kodansha)""Fluid Mechanics, by Imai Isao (1993, Iwanami Shoten)""30 Lectures on Fluid Mechanics, by Toda Morikazu (1994, Asakura Shoten)""Fluid Mechanics, edited by Kanbe Tsutomu, with Kaneda Yukio, Ishii Katsuya, and Goto Toshiyuki (1995, Shokabo)""Handbook of Fluid Mechanics, 2nd Edition, edited by the Japan Society of Fluid Mechanics (1998, Maruzen)""Mechanics of Flow, by Furukawa Akinori, Setoguchi Toshiaki, and Hayashi Hidechikazu (1999, Asakura Shoten)""Triton Fluid Mechanics, Volumes 1 and 2, 2nd Edition, by D. J. Triton, translated by Tetsuya Kawamura (2002, Index Publishing) " "The Dynamics of Flows: From Hydraulics to Fluid Mechanics, by Masaki Sawamoto (2005, Kyoritsu Publishing)"

[References] | Archimedes' principle | vortex | vorticity | speed of sound | sound wave | boundary layer | aerodynamics | high-speed fluid | shock wave | Stokes | d'Alembert | flow | Navier | viscosity | Pascal's principle| Prandtl | Bernoulli | Bernoulli's theorem| Helmholtz | Lagrange | turbulence | fluid | Reynolds | Reynolds number

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

液体と気体を総称して流体といい、その運動を論ずる学問を流体力学という。とくに流体の静止状態を対象とする場合、流体静力学hydrostaticsという。浮力に関するアルキメデスの原理、水圧機の基礎を与えるパスカルの原理などがその範囲に入る。これに対して運動中の流体を対象とする場合が流体動力学hydrodynamicsである。

[今井 功]

流体力学の確立

水路、水道、噴水など実際方面の応用から、流体力学についての素朴な知識は古くから蓄積されていたが、流体力学として学問体系が成立したのは18世紀で、スイスのD・ベルヌーイやオイラー、フランスのラグランジュによって完全流体の運動方程式が樹立されたのに始まる。19世紀なかばにはフランスのナビエとイギリスのストークスによって、粘性流体の運動方程式が提唱され、流体力学の基礎は確立した。1880年にはイギリスのレイノルズによって乱流の概念が導入され、さらに20世紀に入ってドイツのプラントルの境界層理論の提出により、流体力学の現代化が始まる。これはアメリカのライト兄弟による飛行機の誕生と相まって、航空力学という新分野を生み、流体力学の飛躍的な進歩が始まる。1930年代からは、飛行機の高速化に対応して高速流体力学が展開され、第二次世界大戦の前後を通じて亜音速、遷音速、超音速の流体力学が確立する。さらに、宇宙ロケットの登場は極超音速流および希薄気体の力学を促した。一方、内燃機関、タービンに関しての熱現象や化学反応を含む流体力学の研究が行われ、さらに核融合炉に関連して電磁流体力学が登場した。船舶への応用から、波浪現象の流体力学的研究がなされ、これはまた海洋工学にも関連する。台風の発生・進行など大気現象の流体力学も重要である。これら多彩な新分野が開発される一方、乱流現象の研究は、流体力学の基礎として現在着実に進められている。

[今井 功]

流れの場

流体の微小部分を流体粒子という。流体を連続物体とみなす流体力学の立場では、これらの流体粒子によって流体が構成されていると考える。各流体粒子は並進速度vで動き、角速度Ωで自転している。この並進速度vが流体の各点における速度である。いま、点Pにある流体粒子から出発して速度vの方向に隣接している流体粒子を次々とつないでいくと、一つの曲線が得られる。これをP点を通る流線という。流線は、その上の各点の流速の方向を示す曲線である。一つの閉曲線Cをとり、その上の各点を通る流線を引くと、それらの流線を壁とする管ができる。これを流管という。流体はあたかも流管の中を流れているようにみえる。時間的に変化しない流れを定常流という。定常流では流体粒子は流線に沿って運動するから、流体中に色素を流せば、それによって流線が観察される。非定常流では、粒子の軌跡は流線とは一致しない。

 隣接した流体粒子の速度が異なる場合、粒子は自転する。その角速度Ω

で与えられる。ωは渦度(うずど)とよばれる。点Pにある流体粒子から出発して、自転軸の方向、すなわち渦度ベクトルの方向に次々とつないで得られる曲線をPを通る渦線(うずせん)という。また、一つの小さい閉曲線上の各点を通る渦線を壁とする管を渦管(うずくだ)という。微小断面積の渦管の内部にある流体部分を渦糸(うずいと)という。流速vと渦度ωとの間には

の関係式が成り立つ。ここでCは任意の閉曲線、SCを縁とする曲面である。ΓC)はCに沿う循環とよばれ、Cを通り抜ける渦線の総数を表す。ω=0のとき流れは「渦なし」、ω≠0のとき流れは「渦あり」という。渦なしの流れでは流速はv=gradΦのように表される。Φを速度ポテンシャルという。流体粒子は一般に時間的に体積や形を変化する。その膨張速度はΘ=divvで、変形速度はテンソルeik=∂vi/∂xk+∂vk/∂xiで与えられる。ある瞬間に球形の流体粒子は角速度ω/2で自転しながら並進速度vで動き、かつ膨張速度Θで膨張あるいは収縮しながら楕円(だえん)体に変形している。

[今井 功]

流体力学の基礎方程式

流れの状態を完全に記述するためには、流体中の各点の流速vのほか、圧力p、密度ρ、温度Tなどの物理量がわかればよい。自然現象の一つとして、流体の運動は質量・運動量・エネルギーの保存法則に支配される。これを数式で表現したものが流体力学の基礎方程式である。まず、質量保存の法則は、

という微分方程式で表される。これを連続の方程式という。次に運動量保存の法則は

で表される。ここでD/Dtはラグランジュ微分とよばれ、流体粒子の運動に伴う時間的変化を意味する。したがってDv/Dtは加速度である。またKは流体の単位質量当りに働く外力、pikは応力テンソルである。(2)は流体とは限らず任意の連続物体に対する運動方程式であるが、実在の流体では、応力テンソルpikが変形速度テンソルeikの一次式として
pik=-pδik+λΘδik+μeik (3)
の形に表される場合が多い。比例係数μ、λをそれぞれ粘性率、第二粘性率という。また、μ'=λ+(2/3)μを体積粘性率という。普通、μ'=0と仮定される。これをストークスの仮定という。(3)の関係が成り立つ流体はニュートン流体、成り立たない流体は非ニュートン流体とよばれる。後者の例としては高分子やコロイドの溶液がある。(3)を(2)に代入して得られる

が粘性流体の運動方程式であって、ナビエ‐ストークスの方程式とよばれる。

 連続の方程式(1)はDρ/Dt+ρdiv v=0の形に表すこともできる。液体のような「縮まない流体」ではDρ/Dt=0であるから、(1)はdiv v=0と簡単化される。この場合、流速vと圧力pは連続の方程式とナビエ‐ストークスの方程式だけで完全に決定される。気体のような「縮む流体」では、密度ρも変数となるので、さらに他の条件を考慮する必要がある。そのためには、エネルギー保存の法則から導かれる

を使う。すなわちエネルギー方程式である。ここでTは温度、Sはエントロピー(単位質量当り)、Qは熱源(単位体積当り)、qは熱流である。Φは粘性によって流体の運動エネルギーが消滅して熱が発生する(単位体積当り)ことを意味し、散逸関数とよばれる。

[今井 功]

完全流体の運動

粘性のない流体すなわち完全流体では、運動方程式(2)は

となる。これをオイラーの運動方程式という。また、エネルギー方程式(5)のかわりに、密度ρと圧力pの間にその流体の運動状態に特有の関数関係ρ=f(p)が成り立つものと仮定して議論することが多い。このような仮想的な流体をバロトロピー流体という。バロトロピー流体では、外力が保存力(K=-gradΩ)の場合、運動方程式(5)は

と書き表される。これから、ベルヌーイの定理(定常流では流線および渦線上でHは一定である)、圧力方程式(渦なしの流れでは∂Φ/∂tHf(t))、ラグランジュの渦の不生不滅の定理、ヘルムホルツの渦定理(渦糸の強さ、すなわち渦度×断面積は渦糸の全長を通じて一定で、かつ時間的に変化しない)、ケルビンの循環定理(流体粒子で構成される閉曲線に沿っての循環は時間的に一定不変である)が得られる。

 縮まない流体の渦なしの流れでは、連続の方程式(1)は、速度ポテンシャルΦに対するラプラスの方程式ΔΦ=0になる。これを解けば、流速はv=gradΦで、また圧力pは圧力方程式から求められ、流れの中に置かれた物体に働く力は、物体表面に働く圧力の合力を計算すれば得られる。こうして、「静止している完全流体中を等速運動する物体には抵抗が働かない」というダランベールのパラドックスに到達する。縮む流体では、Φに対する方程式は複雑になる。しかし、とくに平衡状態からのずれの小さい場合には、近似的に波動方程式

となる。音波の現象はこれに基づいて議論される。cは音速である。一般に流速Uと音速の比MU/cをマッハ数とよび、M<1の流れを亜音速、M>1の流れを超音速という。また、亜音速と超音速の領域が共存する流れを遷音速であるという。超音速の流れでは、一般に衝撃波が現れる。これは、速度、密度、圧力、温度などが不連続的に変化する面で、強烈な音波の一種である。

[今井 功]

粘性流体の運動

縮まない流体の場合、div vΘ=0で、流れを表す代表的な長さをl、流速をU、流体の密度をρとすると、ナビエ‐ストークスの方程式(4)は無次元の形でDv/DtK-gradpR-1Δvと表される。ただし、R=ρUl/μは無次元の数で、レイノルズ数とよばれる。流れの境界の形が相似であるような二つの流れについて、流れの場全体が相似であるためには、両者のRは一致しなければならない。これをレイノルズの相似法則という。

 加速度Dv/Dt=∂v/∂t+(v・grad)vは、流速vについて二次の項を含むために、(4)は非線形方程式として数学的な取扱いが困難である。Rの小さい場合は、(v・grad)vを無視したり、Uv/∂xで代用する近似が行われる。前者をストークスの近似、後者をオセーンの近似という。Rの大きい流れでは、粘性項R-1Δvを無視すると、完全流体のオイラーの運動方程式になる。ただ物体表面では速度勾配(こうばい)の大きい薄層が現れる。これを境界層という。その方程式は、表面に沿ってx軸をとれば

である。ただし、uvx成分である。これをプラントルの境界層方程式という。

 高速気流では、圧縮性(密度変化)と粘性の影響が同時に現れる。この場合、粘性による摩擦熱の発生を考慮する必要がある。M>5程度以上の流れは極超音速流とよばれ、物体の先端から出る衝撃波が物体表面を覆う境界層と一体となる。

[今井 功]

『A・H・シャピロ著、今井功訳『流れの科学』(1977・河出書房新社)』『木村竜治著『改訂版 流れの科学』(1985・東海大学出版会)』『流れの可視化学会編『流れのファンタジー――写真がとらえた流体の世界』(1986・講談社)』『今井功著『流体力学』(1993・岩波書店)』『戸田盛和著『流体力学30講』(1994・朝倉書店)』『神部勉編著、金田行雄・石井克哉・後藤俊幸著『流体力学』(1995・裳華房)』『日本流体力学会編『流体力学ハンドブック』第2版(1998・丸善)』『古川明徳・瀬戸口俊明・林秀千人著『流れの力学』(1999・朝倉書店)』『D・J・トリトン著、河村哲也訳『トリトン流体力学 』上下・第2版(2002・インデックス出版)』『澤本正樹著『流れの力学――水理学から流体力学へ』(2005・共立出版)』

[参照項目] | アルキメデスの原理 | | 渦度 | 音速 | 音波 | 境界層 | 航空力学 | 高速流体 | 衝撃波 | ストークス | ダランベール | 流れ | ナビエ | 粘性 | パスカルの原理 | プラントル | ベルヌーイ | ベルヌーイの定理 | ヘルムホルツ | ラグランジュ | 乱流 | 流体 | レイノルズ | レイノルズ数

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Ryuta's Bushi - Ryuta's Bushi

>>:  Fluid inclusion - Fluid-cavity

Recommend

Oroshinorui - Oroshinorui

...A tegumi (hand technique) performed to move fr...

Ausforming (English spelling)

This is a type of thermomechanical processing meth...

Jersey City

A city in northeastern New Jersey, USA. Population...

Tonosho [town] - Tonosho

A town in Shozu County in the northwest of Shodo I...

Rainier

Also called Linea. An archaic spirochete that flou...

Coltrane, John (William)

Born: September 23, 1926 in Hamlet, North Carolina...

mémoires (English spelling)

...The former is an account of the author's o...

Kikuzuki Production

…During the Bunka and Bunsei eras, even big names...

Thorax - thorax

An elastic, cage-like skeleton that forms the oute...

Corvus macrorhynchos osai (English name) Corvusmacrorhynchososai

… [Yukio Taniguchi]. … *Some of the terminology t...

Potomac [river] - Potomac

A river in the eastern United States. It originate...

Morgenthau, Hans Joachim

Born: February 17, 1904 in Coburg [Died] July 19, ...

Multivibrator - maruchibaibureta (English name) multivibrator

A pulse circuit with strong positive feedback crea...

Caesarion

47th - 30th Nickname for Ptolemy XV Caesar. The la...

Kashirik - Kashirik

...At the end of the 15th century, Ibak of the Sh...