French chemist. Debut as a chemistHe was born in Paris as the son of a prosecutor at the High Court. After studying at Mazarin College, he entered the Faculty of Law at the University of Paris, where he obtained a bachelor's degree in law (1764). However, he did not take over the family business, but instead devoted himself to absorbing knowledge of natural sciences. He was particularly influenced by the geologist Guettard, who had been a long-time friend of his family; he collected mineral specimens and it seems that he also stimulated his interest in chemistry. His first chemical research was the analysis of gypsum (1764-1765), notable for its use of quantitative methods. He also participated in a competition for the best street lamps for the city of Paris, winning a medal (1766). In 1767, he traveled with Guettal to create a mineral and geological map, which he continued to work on for about ten years. He published the results of his analysis of drinking water collected during the trip, and was elected a member of the Academie des Sciences in Paris (1768). At the end of the same year, in order to verify the theory that water can be transformed into earth, he boiled water in a sealed vessel for 101 days. He then weighed it accurately and showed that the white precipitate that formed was the result of dissolution of the vessel's inner wall, disproving the previous theory. In the same year, he became a member of the tax collectors' guild, becoming financially independent, and in 1771 he married the daughter of a fellow merchant. In 1775 he became manager of the Gunpowder and Saltpeter Company, and the following year, in 1776, he moved to the Arsenal, where he built an excellent laboratory and where most of his experiments were carried out. [Akira Yoshida] Establishment of combustion theoryOne phenomenon that interested chemists at the time was combustion, and repeated experiments were conducted on the burning of diamonds and on the burning of materials exposed to sunlight using a convex lens. Stahl's phlogiston theory was known as the theory of combustion. In other words, combustion is a type of decomposition phenomenon in which phlogiston (a fuel element) contained in the material being burned is released and becomes heat and flames. On the other hand, calcination, in which metals are heated to turn into metallic ash, was also considered to be the same phenomenon as combustion. However, it became clear that while the ash remaining after combustion generally becomes lighter, all metallic ash increases in weight. This raised the issue of how to explain this contradiction. In 1772, Lavoisier conducted an experiment on the combustion of phosphorus, and confirmed that its weight increased. He then found that the same thing happened with sulfur. At that time, air was absorbed, and he thought that the cause of the weight increase during combustion and calcination was the absorption of air. Therefore, beginning in 1773, he decided to thoroughly investigate the problem of combustion and weight increase. He did not yet reject the existence of phlogiston, and said that phlogiston and air are replaced during combustion. However, he thought that the absorbed air was the "fixed air" (carbon dioxide) discovered by Black around 1755, and was unable to find a clue to the solution. In October 1774, Priestley visited Paris and told Lavoisier about his experiment with mercury oxide that he had conducted a few months earlier and the gas (oxygen) that was obtained during that experiment to aid combustion, but it seems that Lavoisier was not interested. In the following year, 1775, Lavoisier repeated the experiment of obtaining oxygen by igniting mercury oxide, and was able to clearly distinguish it from carbon dioxide. The name "oxygen" was proposed in 1779, because it was generally believed that an acid was produced when it combined with oxygen. He criticized the phlogiston theory, arguing that there was no need to assume a combustion element, since the increase in weight during combustion corresponds to the amount of oxygen combined. [Akira Yoshida] Quantitative Experimental Methods and the Foundations of Modern ChemistryMeanwhile, Lavoisier collaborated with Laplace on experiments using the calorimeter, a simple device invented by Laplace that measured the amount of water produced by the melting of ice by heat, and was used to measure specific heat, heat of reaction, and heat of respiration (1782-1783). Lavoisier overlooked the formation of water (discovered by Cavendish) because he believed that hydrogen also becomes an acid when it combines with oxygen, but he was the first to decompose water. In 1784, he obtained hydrogen by heating an iron tube and dropping water into it. This was devised to obtain the large amounts of hydrogen needed for light balloon flights, which began in 1783. After it was quantitatively confirmed (1785) that water is precisely composed only of oxygen and hydrogen, the number of chemists who supported the theory of combustion with oxygen gradually increased. In 1787, the anti-phlogistonists, led by Guiton de Morboz and Lavoisier, published "Nomenclature of Chemistry," in which names such as hydrogen and nitrogen were adopted along with definitions of elements. However, the elements included light and caloric elements, and according to Lavoisier, oxygen gas was a combination of elemental oxygen and caloric elements. In 1789, based on this new nomenclature and the new gas chemistry, he wrote "Outlines of Chemistry" as an introductory book. In it, he clearly stated the principle of conservation of mass, which he had been consciously using up until that point. In the same year, the anti-phlogistonists launched the "Annals of Chemistry," which played a role in spreading his theory. However, at least in France, Lavoisier's supporters accepted not only the theory of combustion by oxygen, but also the theory that oxygen is the cause of acids and the caloric theory, leaving problems for the 19th century. Lavoisier also showed an interest in agriculture, and when he acquired land near Blois he began experiments to increase crop yields, and joined the Royal Agricultural Society and the government's agricultural committee. Ideologically, he was close to the Physiocrats such as Quesnay. [Akira Yoshida] Revolutionary interruptionThe French Revolution, like other scientists, provided Lavoisier with a platform for political participation. As early as 1787, he had already been a deputy for the third estate in the local assembly of Orléans, where he owned land. In 1789, he became a deputy for the city of Paris. In 1791, the tax collection system was abolished, but Lavoisier's financial skills were recognized and he was appointed Commissioner of the Treasury. When the National Assembly decided to unify weights and measures, a committee was created within the Academy of Sciences to determine new units (1791). To determine the unit of mass, Lavoisier precisely measured the mass of a certain volume of distilled water at various temperatures. In between his busy official duties, he continued his research, moving from gas chemistry itself to physiological matters such as the relationship between respiration and combustion (1790-1791). Perhaps due to concerns about the excesses of the revolution, he eventually resigned all his government posts and moved out of his residence at the Arsenal (1792) in order to devote himself to the activities of the Academy of Sciences. But in the summer of 1793, when the Reign of Terror began, the Academy of Sciences was closed along with all other learned societies, and in the autumn of the same year all the former tax collectors were arrested, and in May 1794, Lavoisier and others were sent to the guillotine. His work in chemistry was already finished, but his work on the physiology of respiration had only just begun and was interrupted. [Akira Yoshida] "The Life of Lavoisier, by E. Grimaud, translated by Egami Fujio (1941, Hakusuisha)" ▽ "Lavoisier, by M. Doma, translated by Shimao Nagayasu and Amaha Hitoshi (1978, Tokyo Tosho)" ▽ "Lavoisier, by Nakagawa Tsurutaro (1991, Shimizu Shoin)" ▽ "Lavoisier 1743-1794, by Édouard Grimaud, translated by Tanaka Toyosuke, Harada Noriko and Makino Fumiko (1995, Uchida Rokakuho)" [References] | | | | | |Law | |1788 Oil on canvas, Metropolitan Museum of Art David's "Portrait of Mr and Mrs Lavoisier" Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
フランスの化学者。 化学者としてのデビュー高等法院の検事の息子として、パリに生まれる。マザラン・カレッジで学んだのち、パリ大学法学部に入り、法学士の資格をとった(1764)。しかし、家業は継がず、自然科学の知識の吸収に熱中した。とくに、以前から家と親交のあった地質学者ゲッタールの影響は大きく、鉱物の標本を集めたりしていたし、化学への関心も彼によってかき立てられたようである。 最初の化学研究は石膏(せっこう)の分析で(1764~1765)、早くも定量的方法が使われている点で注目に値する。また、パリ市の照明に最適な街灯を求むというコンクールに応募して、メダルを獲得した(1766)。1767年には、ゲッタールとともに、鉱物地質地図作成のための旅行をし、その後も10年間ほどこの地図の完成のために努力した。この旅行で集めた飲料水の分析結果を発表し、パリ科学アカデミー会員に選ばれた(1768)。同年末、水が土に変換しうるという説の真偽を確かめるため、水を密閉容器内で101日間沸騰し続けた。そして精確な秤量(ひょうりょう)を行い、生成した白い沈殿物は容器の内壁が溶け出したものであることを示し、先の説の誤りを立証した。また同年、徴税請負人組合の一員となって経済的にも自立し、1771年には同業者の娘を妻に迎えた。1775年には火薬硝石公社の管理人となり、翌1776年兵器廠(しょう)に移り住んだ。そこにりっぱな実験室をつくり、実験の大部分はそこで行われることになる。 [吉田 晃] 燃焼理論の確立当時化学者の興味をひいた現象に燃焼があり、ダイヤモンドの燃焼や、凸レンズを使った太陽光線による燃焼実験が繰り返された。燃焼の理論としては、シュタールによるフロギストン説が知られていた。すなわち、燃焼とは一種の分解現象で、燃焼物中に含まれていたフロギストン(燃素)が飛び出てきて、熱や炎となるというのである。一方、金属が加熱によって金属灰となる煆焼(かしょう)も、燃焼と同じ現象とみなされた。ところが、一般には燃焼後に残る灰は軽くなるのに、金属灰ではすべて重量が増加することが明らかになってきた。そこで、この矛盾をいかにして説明するかが問題となった。 ラボアジエは、1772年にリンの燃焼実験を行い、重量が増加することを確認し、続いて、硫黄(いおう)についても同様であることをみいだした。その際、空気が吸収されることから、燃焼や煆焼における重量増加の原因は、空気の吸収にあると考えた。そこで1773年の初めから、燃焼と重量増加の問題を徹底的に調べることを決心した。彼はまだフロギストンの否定はせず、燃焼の際、フロギストンと空気が入れ替わるとした。しかしこの吸収される空気は、ブラックが1755年ころ発見した「固定空気」(二酸化炭素)ではないかと考えていたため、解決の糸口をつかめずにいた。1774年10月にプリーストリーがパリを訪れ、数か月前に行った酸化水銀の実験およびその際得られた燃焼を助ける気体(酸素)について語ったが、ラボアジエの関心をひかなかったようである。翌1775年になって、ラボアジエは酸化水銀を強熱して酸素を得る実験を繰り返し、二酸化炭素との区別をはっきりさせることができた。酸素という名称は1779年になって提唱されるが、その動機は、一般に酸素と結合すると酸が生成すると考えたからである。燃焼の際の重量増加は結合する酸素の量に一致するので、燃素を仮定する必要はないとしてフロギストン説を批判した。 [吉田 晃] 定量実験法と近代化学の基礎一方でラボアジエはラプラスと協力して熱量計による実験を行った。これはラプラスの考案によるもので、氷が熱により融(と)けて水となった量を量るという簡単な装置で、比熱、反応熱、呼吸による熱などが測定された(1782~1783)。 ラボアジエは、水素も酸素と結合すると酸になると考えていたため、水の生成(キャベンディッシュが発見)を見過ごしたが、水の分解を最初に行ったのは彼である。1784年に鉄管を灼熱(しゃくねつ)し、中に水滴を垂らすことにより、水素を得た。これは、1783年に始まった軽気球飛行に必要な大量の水素を得るために考えられたものである。水は正確に酸素と水素とからだけ成り立っていることが定量的に確かめられて以後(1785)、酸素による燃焼理論を支持する化学者が少しずつ増えてきた。 1787年、ギトン・ドゥ・モルボを中心として、ラボアジエ以下反フロギストン派により『化学命名法』が出版され、元素の定義とともに水素、窒素などの名称が採用された。しかし、その元素のなかには光やカロリック(熱素)が含まれており、ラボアジエによれば、酸素ガスとは酸素元素とカロリックとが結合したものであった。1789年に、この新命名法および新しい気体化学に基づいて、入門書として『化学綱要』を執筆した。そのなかで、彼がこれまで意識的に使ってきた質量保存の原理が明確に述べられている。同年、反フロギストン派により『化学年報』が創刊され、彼の説を広める役を担った。しかし、少なくともフランスにおいては、ラボアジエの支持者たちは酸素による燃焼の理論だけでなく、酸素を酸の原因とする理論およびカロリック説も受け入れたことにより、19世紀に問題を残した。 ラボアジエは農業にも関心を示し、ブロアの近くの土地を入手したのを機会に、作物の収穫を増やすための実験を始め、王立農業学会や、政府の農業委員会に加わった。思想的には、ケネーらの重農主義者に近い考えをとっている。 [吉田 晃] 革命による中断フランス革命は、他の科学者同様、ラボアジエに対しても政治的参加の場を提供した。すでに革命前の1787年には所有地のオルレアン地方議会で第三階級代議員として活動していた。1789年にはパリ自治市の代議員となった。1791年に徴税請負制度が廃止されたが、ラボアジエの財政上の手腕が買われて、国庫財務委員に任命された。国民議会により度量衡の統一が決定されると、新しい単位決定のため、科学アカデミー内に委員会が設けられた(1791)。ラボアジエは、質量の単位を決定するため、各温度のもとで一定体積の蒸留水の質量を精密に測定した。忙しい公務の合間にも自分の研究を続け、その対象は気体化学そのものから、呼吸と燃焼の関係といった生理学的なものに移っていった(1790~1791)。おそらく革命の行きすぎを懸念したためであろうが、科学アカデミーの活動に専念するために、結局政府のポストをすべて辞任し、兵器廠の住居も引っ越した(1792)。しかし、恐怖政治の始まった1793年の夏には、他のすべての学会とともに科学アカデミーも閉鎖された。同年秋には元徴税請負人は全員逮捕され、1794年5月、ラボアジエも含めて、断頭台に送られた。彼の化学における仕事はすでに終了していたといえるが、呼吸の生理学的研究は始まったばかりで中断されてしまった。 [吉田 晃] 『E・グリモー著、江上不二夫訳『ラヴォアジェ伝』(1941・白水社)』▽『M・ドーマ著、島尾永康・天羽均訳『ラヴォワジエ』(1978・東京図書)』▽『中川鶴太郎著『ラヴォアジエ』(1991・清水書院)』▽『エドアール・グリモー著、田中豊助・原田紀子・牧野文子訳『ラボアジエ 1743―1794』(1995・内田老鶴圃)』 [参照項目] | | | | | | | |1788年 油彩メトロポリタン美術館所蔵"> ダビッド『ラボアジエ夫妻像』 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
>>: Ravenna - Ravenna (English spelling)
…[Tsubaki Keisuke]. . . *Some of the terminology ...
The sound produced by the vocal organs is the sou...
…The scope of application of weighted qualified m...
This hot spring is located in Tazawako Town, Senbo...
…Because of this property, the molecular weight M...
…There is another game that aims to be fun in the...
A political group of bureaucrats formed in the So...
...In the 20th century, Martiros S. Sar'yan (...
A river that flows through central Nara Prefectur...
A port city in the southwest of the Malay Peninsu...
...In this case, as shown in Figure c, the sister...
...The flowers are mostly white, with thick petal...
…There is no record of a five-story pagoda ever c...
...a translation of the Sanskrit word vīrya. To s...
〘 noun 〙① When there are many buyers or constructi...