Menelaus's Theorem

Japanese: メネラウスの定理 - めねらうすのていり
Menelaus's Theorem

In triangle ABC, if the points where a straight line that does not pass through any vertex intersects with the three sides BC, CA, and AB or their extensions are D, E, and F, respectively, the product of the three ratios that internally or externally divide each side is 1. That is, BD/DC・CE/EA・AF/FB=1
This is called Menelaus' Theorem. Menelaus (date of birth and death unknown) was an astronomer active in Alexandria around 100 AD, and he also derived a similar theorem about spherical triangles. The converse of this theorem also holds. That is, if point D is on the extension of side BC of triangle ABC, and points E and F are on sides CA and AB, and the product of the three ratios mentioned above is 1, then the three points D, E, and F are on a line. This is also true when all three points are on the extension of the sides. These theorems are used to prove that three points are on a line. A theorem that states that three points are on a line is called the Collinear Theorem. The converse of Menelaus' Theorem holds is the basis of the Collinear Theorem.

[Toshio Shibata]

Proof and converse proof of Menelaus' theorem
©Shogakukan ">

Proof and converse proof of Menelaus' theorem


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

三角形ABCにおいて頂点を通らない直線が三辺BC、CA、ABあるいはその延長と交わる点を、それぞれD、E、Fとするとき、各辺を内分あるいは外分する三つの比の積は1となる。すなわち
  BD/DC・CE/EA・AF/FB=1
である。これをメネラウスの定理という。メネラウスMenelaus(生没年不詳)は100年ころアレクサンドリアで活躍した天文学者で、球面三角形についての類似の定理をも導いている。この定理の逆も成立する。すなわち、三角形ABCの辺BCの延長上に点Dが、辺CA、AB上に点E、Fがあり、前述の三つの比の積が1ならば、3点D、E、Fは一直線上にある。これは、3点とも辺の延長上にある場合も同様である。これらの定理は、3点が一直線上にあることを証明するのに用いられる。3点が一直線上にある定理を共線定理という。メネラウスの定理の逆の成立は共線定理の基本である。

[柴田敏男]

メネラウスの定理の証明と逆の証明
©Shogakukan">

メネラウスの定理の証明と逆の証明


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Menelaos

>>:  Menes - Menes (English spelling)

Recommend

Feminity test

A test given to women in separate sports. It is al...

Franciscus Gomarus

1563‐1641 Dutch theologian. Also called Gomarus. B...

Rai Sanyo

A Chinese poet and historian of the late Edo peri...

Gas fugitive method - Kitai fugitive method

…When a small amount of liquid is placed in a cen...

John Dory (Zeus japonicus)

A marine fish of the John Dory order and John Dory...

Kanakurabuchi - Kanakurabuchi

… [Keiji Ueda] [The Legend of the Sunken Bell] Th...

Keno

…Bingo is especially popular in the UK, where it ...

Southern [town] - Nanbu

A town in Sannohe County in the southeastern part ...

Dal'nii (English spelling)

…After the Triple Intervention, in 1898 (the 24th...

Mayer, AFJK (English spelling) MayerAFJK

...that is, (1) cellular tissue, (2) animal nervo...

Ernst Thälmann

Leader of the German Communist Party. He was orig...

Biscuit - Biscuit (English spelling)

Western-style baked goods made primarily from whe...

Monk Mokujiki - Table of Contents

A common name for monks who, after becoming monks,...

Shooting competition - shooting

A sport in which participants snipe targets using...

Qiū Chǔ jī (English spelling)

1148‐1227 He was one of the top disciples of Wang ...