It refers to filling in the gaps between values in a mathematical table, that is, finding the function value midway between the points given by the function values at several points. The simplest interpolation method is linear interpolation, which uses a linear formula to interpolate between two adjacent points. This is a method of approximating the points using a line graph. Similarly, we can consider higher-order interpolation such as a quadratic function passing through three points, or a cubic function passing through four points . In general, n points ( x1 , y1 ), ( x2 , y2 ), ..., ( xn , yn )
Increasing the degree of an interpolating polynomial without consideration of accuracy does not necessarily improve the accuracy, and in fact often leads to worse results. In particular, when trying to find approximate differential coefficients by differentiating an interpolating polynomial, which is called numerical differentiation, increasing the degree often leads to failure. This is partly because errors in the data are magnified during the interpolation process, but even if there is no error in the data, abnormal results can occur. [Hayato Togawa] Spline InterpolationA spline is a flexible ruler, and like a flexible ruler, spline functions were devised as an interpolation function for drawing smooth curves that pass through several given points. They are used in computer graphic display and numerical control of machine tools. [Hayato Togawa] "The Fundamentals of Numerical Analysis, by P. Henrich, translated by Ichimatsu Makoto, Hiramoto Iwao, and Honda Masaru (1973, Baifukan)" ▽ "Spline Functions and Their Applications, by Ichida Kozo and Yoshimoto Fujiichi (1979, Kyoiku Shuppan)" ▽ "Numerical Calculation Methods, by Togawa Hayato (1981, Corona Publishing)" ▽ "Mathematics of Numerical Calculation Methods, by Sugihara Masaaki and Murota Kazuo (1994, Iwanami Shoten)" ▽ "Numerical Calculation Methods , edited by Natori Ryo, Hasegawa Hidehiko et al. (1998, Ohmsha)" ▽ "The Key Points of Numerical Calculation, edited by Ninomiya Ichizo, Yoshida Toshio et al. (2004, Kyoritsu Shuppan)" Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
数表に出ている値の間を補うこと、すなわち、いくつかの点で与えられている関数値を基に、それらの点の中間における関数値を求めることをいう。 もっとも簡単な補間法は、隣り合った2点間を一次式で補間する線形補間で、これは、いわば折れ線グラフで近似するやり方である。 同様に、3点を通る二次式を用いる方法、4点を通る三次式を用いる方法などの高次補間を考えることができる。一般にn点
補間多項式の次数をむやみにあげても精度はかならずしもよくならず、むしろ悪い結果をもたらすことが多い。とくに、数値微分といって、補間多項式を微分することによって近似的な微分係数を求めようとする場合、次数をあげると失敗することが多い。その理由は、データの誤差が補間の過程で拡大されるためでもあるが、たとえデータに誤差がまったくなくても異常な結果になることがある。 [戸川隼人] スプライン補間スプラインsplineとは自在定規のことで、自在定規のように、いくつかの与えられた点を通る滑らかな曲線を描くための補間関数として考案されたのがスプライン関数である。コンピュータによる図形表示や、工作機械の数値制御などに用いられる。 [戸川隼人] 『P・ヘンリッチ著、一松信・平本巌・本田勝訳『数値解析の基礎』(1973・培風館)』▽『市田浩三・吉本富士市著『スプライン関数とその応用』(1979・教育出版)』▽『戸川隼人著『数値計算法』(1981・コロナ社)』▽『杉原正顕・室田一雄著『数値計算法の数理』(1994・岩波書店)』▽『名取亮編、長谷川秀彦他著『数値計算法』(1998・オーム社)』▽『二宮市三編、吉田年雄他著『数値計算のつぼ』(2004・共立出版)』 出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
<<: Bookkeeping - boki (English spelling) bookkeeping
>>: Khokand Khan Country - Khokand Khan Country
The Latvian name is Riga. Riga is the English nam...
A town in Higashi Shirakawa District, southern Fuk...
There were three Sarugaku troupes that performed a...
1350‐1430 Grand Duke of Lithuania. Reigned 1392-14...
Also called a prominence. A gas body located sever...
…It enters Mozambique, turns from east to southea...
…He belongs to the Sarvastivada school, a branch ...
… [Takeda Masatomo]. … *Some of the terminology t...
Also known as backcrossing. Crossing the first gen...
…He was the founder of the Carolingian dynasty. H...
…Surgical treatment of the heart was first perfor...
Also called monogamy. An exclusive and continuous ...
A scholar of English and English literature. Born...
A common name for over a dozen treaties that the ...
1869‐1949 A Dutch missionary and anthropologist. H...