A relational equation between two or more independent variables and an unknown function and its partial derivative is called a partial differential equation. The highest order of the partial derivatives contained in the relational equation is called the order of the equation. A partial differential equation that is a first-order equation with respect to the unknown function and each of its partial derivatives is said to be linear, and if it is not, it is said to be nonlinear. A partial differential equation that is a first-order equation with respect to the highest-order partial derivative is said to be quasi-linear. When the independent variables are x and y , a first-order quasi-linear equation is a ( x , y , u ) u x + b ( x , y , u ) u y = c ( x , y , u ) (1) Consider the first-order quasi-linear equation (1). The problem of finding a solution to (1) that is equal to a given function at each point on the curve P in the x - y plane is called the general initial value problem for (1). For (1), consider the simultaneous ordinary differential equations x ′= a ( x , y , u ), with unknown functions x , y , and u . The generalized initial value problem for a second-order linear equation (2) is the problem of finding a solution such that at each point on a given curve P, a given function is equal, including its normal derivatives. Now, let the equation of curve P be ( x , y )=0. If, For the wave equation u xx - u yy = 0, the curve y = 0 is non-characteristic. In this case, a solution exists even if the initial function is not analytical, and the solution depends continuously on the initial function. Laplace's equation u xx + u yy =0 In equation (2), "if ac - b 2 > 0, it is elliptic; if ac - b 2 = 0, it is parabolic; if ac - b 2 < 0, it is hyperbolic." For hyperbolic equations, initial value problems are appropriate. For elliptic equations, boundary value problems are appropriate. Second-order linear partial differential equations are important in mathematical physics and have been studied in detail. [Yoshikazu Kobayashi] [Reference] | | | |Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend |
2個以上の独立変数と未知関数およびその偏導関数の間の関係式を偏微分方程式という。関係式に含まれる偏導関数の最高階数をその方程式の階数という。未知関数とその各偏導関数について一次式であるような偏微分方程式は線形であるといわれ、そうでないとき非線形であるといわれる。また、最高階の偏導関数について一次式であるような偏微分方程式は準線形であるといわれる。独立変数がx、yのとき、一階準線形方程式は 一階準線形方程式(1)を考える。x-y平面上の曲線P上の各点で与えられた関数に等しい(1)の解を求める問題を、(1)に対する一般初期値問題という。(1)に対し、x、y、uを未知関数とする連立常微分方程式 二階線形方程式(2)に対する一般初期値問題は、与えられた曲線P上の各点で与えられた関数に、その法線導関数を含めて等しくなるような解を求める問題である。 いま、曲線Pの方程式を(x,y)=0とする。もし、 波動方程式uxx-uyy=0に対し、曲線y=0は非特性である。この場合、初期関数が解析的でなくとも解が存在し、解は初期関数に連続的に依存する。 ラプラスの方程式 方程式(2)において「ac-b2>0ならば楕円(だえん)型、ac-b2=0ならば放物型、ac-b2<0ならば双曲型である」という。双曲型方程式に対しては初期値問題が適切である。楕円型方程式に対しては境界値問題が適切である。二階線形偏微分方程式は数理物理学において重要であり、詳しく調べられている。 [小林良和] [参照項目] | | | |出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例 |
...Short bacilli are called short bacilli, and lo...
…The Asaino family was a prominent family in Saka...
Manga artist. Born in Hakodate, Hokkaido. Grew up...
...A method of reducing metal oxides using the la...
...However, from the late 1960s onwards, the prob...
...However, several plants are known from the Old...
The former name of Burkina Faso, a landlocked cou...
In the classical sense, differential geometry is ...
…This is almost the same as in Germany. (1) Farms...
…Abbreviation for Bank for International Settleme...
… [Mitsuru Hotta]... *Some of the terminology tha...
…Archaeopteryx [Appearance of new birds] No bird ...
…It is also called 'Hiderisou' (Sunshine ...
…Recently, it has become relatively easy to treat...
…Several yearly gyoji were in charge of the town ...