Standard deviation - Hensa

Japanese: 偏差値 - へんさち
Standard deviation - Hensa

A deviation score is a measure of how much an individual's test results on intelligence, academic ability, personality, etc. are above or below the average of a group, expressed using a standard deviation scale. The basic form is as follows:

However, this formula has a too rough scale and requires a minus sign when the value is below the average value. To solve these problems, the following formula is used.


That is, the scale is divided into tenths, and the standard deviation of an individual at the average is set at 50. If the distribution of scores is normal (bell shaped), then, for example, a standard deviation of 70 or above will include 2.28% of the top students, and a standard deviation of 40 or below will include 15.87% of the bottom students.

The standard deviation indicates the degree of variation in scores and is expressed by the following formula.


Here, the symbol Σ means to sum up. The standard deviation is calculated by taking the square root of the sum of the squares of the difference (deviation) between an individual's score and the group's average score, divided by the number of people in the group. If the distribution of scores is normal, the standard deviation is approximately one-sixth of the difference (range) between the highest and lowest scores.

[Iroku Kawai]

Utilizing deviation scores

Intelligence tests were probably the first to use standard deviations to display test results. Conventionally, intelligence test results were displayed as mental age (MA) or intelligence quotient (IQ), but since the development of intelligence tests for adults, intelligence standard deviations have come to be used more frequently. Since the intelligence development curve becomes gentler in the late teens and levels off or declines in middle-aged and elderly people, it was recognized that intelligence standard deviations, which show an individual's position within a group based on the average and distribution for each age, are more rational and convenient than mental age or intelligence quotient.

Eventually, the method of expressing scores by standard deviation came to be applied to academic achievement tests. Good examples are the results of national standardized academic achievement tests and university entrance exams (the Joint First-Stage Exams until 1989 and the Center Test since 1990) shown as academic achievement standard deviations. This allows students to know the national level of their academic ability, and since the 1970s it has been used as a source of information for predicting whether they will pass or fail entrance exams. Also, if a student's scores in a teacher-created final exam are, for example, 50 points in Japanese and 40 points in mathematics (when the average scores are 60 points in Japanese and 30 points in mathematics), there is no point in comparing the student's scores in Japanese and mathematics as they are. To compare them, it is necessary to convert the scores in Japanese and mathematics into the same scale, called standard deviations. Thus, standard deviations are very rational and convenient, and have come to be widely used as a method of expressing scores in personality tests and other tests.

[Iroku Kawai]

The "deviation score" problem

However, because the negative effects of deviation value data, such as "round-trip selection" and the ranking of universities, were often pointed out, the Ministry of Education (now the Ministry of Education, Culture, Sports, Science and Technology) began to promote the diversification of evaluation standards, such as the implementation of the National Center Test to replace the Joint First-Stage Exam (1990) and the abolition of standardized tests by companies (1993). In this way, academic ability deviation values ​​have been severely criticized as the so-called "deviation value" problem, and are said to be one of the causes of today's distortion in education. It is true that academic ability deviation values ​​can be evaluated on the same scale on a national scale, so by investigating and tallying the scores of successful applicants, disparities between schools become clear and are used to rank schools. It is also true that since academic ability deviation values ​​began to be widely used, the tendency to evaluate schools and individuals based solely on academic ability and the momentum for overemphasis on intellectual education have accelerated. However, it is not appropriate to attribute the responsibility for this to deviation values. The deviation value itself only indicates the relative position an individual occupies within a group, and the important thing is how it is used, and the responsibility should lie with the incorrect use of deviation values. Apart from this, standard deviation scores are considered under the assumption that scores are normally distributed. However, when it comes to academic performance (academic ability), if a teacher provides excellent instruction, there will be many students who get high scores, and the distribution will not be normal. This point must be kept in mind when using academic ability standard deviation scores. Conversely, if scores that should be normally distributed do not, it is desirable to correct the distribution to a normal distribution and obtain the standard deviation. The standard deviation in this case is specifically called the T score.

[Iroku Kawai]

"The Secret of School Reports and Standard Deviation Values" (1981), edited and published by the Mainichi Shimbun Company; "Children Vulnerable to Standard Deviation Values" (1984, Kodansha), by Mochizuki Kazuhiro ; "Standard Deviation Values ​​- The Monster of Japan's 'Education Paradise'" (1986, Kyoikusha) , by Yagura Hisayasu; "Junior High School Students' Careers and the Standard Deviation Value Problem" (1993, Minshusha), by Kikuchi Ryosuke; "The Future of Japanese Schools - What Will Happen to Standard Deviation Value Education" (1993, Tarojirosha) , by Takeuchi Tsunekazu; "Don't Worry About Standard Deviation Values" (1994, Kindai Bungeisha) , by Tamari Masaru; "Reviving Standard Deviation Values ​​- Wisdom for Entrance Exams Needed Now" (1995, Nesco), by Kuwata Shozo; "The Age of SQ - Farewell to Standard Deviation Value Education" (1997, Educational Development Research Institute), by Hirai Akira; "Moriguchi Akira, 'Standard deviation scores will save children' (1999, Soshisha)""Tagaya Mitsuo, 'Standard deviation scores are not to blame' (2001, Yotsuya Round)"

[Reference items] | Academic ability | Academic ability test | Joint First Examination | Mental age | National Center Test for University Admissions | Intelligence test | IQ | Standard deviation

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

偏差値とは個人の知能や学力や性格などについての検査結果が、集団の平均値よりもどれくらい上または下に偏っているかを、標準偏差を目盛りとして表すものである。その基本型は、

であるが、この式によると、目盛りが粗すぎるし、平均値以下の場合にマイナス符号をつけなければならない。そこでこれらの不便を解消するために、次式が用いられる。


すなわち、目盛りを10分の1にし、平均値に位置する個人の偏差値を50としている。得点の分布が正規分布(釣鐘のような形)の場合には、たとえば偏差値70以上には上位からの2.28%が、そして40以下には下位からの15.87%が含まれる。

 なお標準偏差とは、得点のばらつきの程度を示すもので、次式によって示される。


ここでΣの記号は、合計することを意味する。そこで標準偏差は、個人の得点と集団の平均値の差(偏差)の二乗和を集団の人数で割った値を開平して求められる。標準偏差は、得点の分布が正規分布の場合には、最高点と最低点の差(範囲)のほぼ6分の1に相当する。

[河合伊六]

偏差値の活用

検査結果の表示法として偏差値が用いられるようになったのは知能検査が最初であろう。知能検査の結果は、従来、精神年齢(MA)や知能指数(IQ)で表示されていたが、成人用知能検査が開発されたころから、知能偏差値が多く用いられるようになった。知能の発達曲線は10歳代の後半から緩やかになり、中・高年になると横ばいもしくは低下を示すので、各年齢ごとの平均値や分布に基づいて、個人の集団内の位置を示す知能偏差値のほうが、精神年齢や知能指数よりも合理的で便利であることが認められたからである。

 その後やがて、偏差値による表示法は学力検査にも適用されるようになった。全国版の標準学力検査や大学入学試験(1989年までの共通一次試験や90年以後のセンター試験)の結果を学力偏差値で示すのはその好例である。これによれば、個人の学力が全国的な規模でどの程度の水準に位置しているかを知ることができるので、1970年代以降は入試の合否の予測のための情報源として活用されている。また、教師が作成した期末試験で、ある生徒の成績が、たとえば、国語で50点、数学で40点のとき(平均点が国語で60点、数学で30点のとき)、その生徒の国語と数学の成績を素点のまま比較しても意味はない。それを比較するには、国語と数学のそれぞれを偏差値という同じ尺度に換算することが必要である。このように、偏差値はたいへん合理的で便利なものであるために、さらに性格検査やその他の得点の表示法として広く用いられるようになった。

[河合伊六]

「偏差値」問題

ところが、偏差値データによる「輪切り選抜」や大学の序列化といった弊害がしばしば指摘されたため、文部省(現文部科学省)は共通一次試験にかわるセンター試験の実施(1990)、業者による統一テストの廃止(1993)など、評価尺度の多元化を進めるに至った。このように、いわゆる「偏差値」問題として、学力偏差値が厳しく批判され、今日の教育のゆがみを引き起こした原因の一つのような言い方がされている。学力偏差値によれば、全国的規模での同じ尺度で評定できるので、合格者のそれを調査し集計することにより学校間の格差は明らかになり、それが学校のランク付けに利用されることは事実である。また、学力偏差値が広く用いられるようになったころから、学力だけで学校や個人を評価する傾向や知育偏重の気運に拍車がかかったことも事実である。しかし、その責任を偏差値に帰すことは妥当ではない。偏差値自体は個人が集団内で占めている相対的位置を表示するだけのものであり、要はその活用の仕方であって、偏差値の誤った用い方をしたことのほうに責任が問われるべきである。このこととは別に、偏差値は得点が正規分布することを前提として考察されたものである。ところが、学業成績(学力)は、教師が優れた指導をすれば高得点者が多くなり、正規分布とはならないはずである。学力偏差値を用いる際にはこの点に留意する必要がある。逆に、本来、正規分布になるはずの得点がそうならなかった場合には、分布を正規分布の形に修正して偏差値を求めることが望ましい。この場合の偏差値はとくにT得点とよばれる。

[河合伊六]

『毎日新聞社編・刊『内申書・偏差値の秘密』(1981)』『望月一宏著『偏差値にゆらぐ子供たち』(1984・講談社)』『矢倉久泰著『偏差値――「教育天国」日本の妖怪』(1986・教育社)』『菊地良輔著『中学生の進路と偏差値問題』(1993・民衆社)』『竹内常一著『日本の学校のゆくえ――偏差値教育はどうなるか』(1993・太郎次郎社)』『玉利まさる著『偏差値なんて、気にしない』(1994・近代文芸社)』『桑田昭三著『よみがえれ、偏差値――いまこそ必要な入試の知恵』(1995・ネスコ)』『平井明著『SQの時代――偏差値教育との訣別』(1997・教育開発研究所)』『森口朗著『偏差値は子どもを救う』(1999・草思社)』『多賀谷光男著『偏差値に罪はない』(2001・四谷ラウンド)』

[参照項目] | 学力 | 学力テスト | 共通一次試験 | 精神年齢 | 大学入試センター試験 | 知能検査 | 知能指数 | 標準偏差

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Jeremy Bentham

>>:  Henza Island

Recommend

Actin

A type of protein that is the main component of m...

Kishago

…As the name suggests, in the past, stone flickin...

Hadriana

...The Benedictine Rule became the most widely ap...

Greenwich - Gurinij (English spelling) Greenwich

A borough in the east of Greater London, the capi...

Japan People's Liberation League

The anti-war league was formed in April 1944 (Sho...

Cumberland Sumo

...sports that have been passed down for a long t...

Letter of consent - Wayojo

A contract that was exchanged when a settlement w...

Ibn Hani (English spelling)

… In the Maghreb and Al-Andalus, the mainstream o...

Handgun - Kenju (English spelling)

Also called a pistol, it is a small gun that can ...

Aki cotton

…The Sanyo Road runs through the country, and the...

Ohiroshikiban - Ohiroshikiban

The title of a job in the Edo Shogunate. An offici...

Aone [Hot Spring] - Aone

It is located in Kawasaki-cho, Shibata-gun, Miyagi...

Euproctis subflava (poisonous moth)

An insect of the Lepidoptera order, family Lymantr...

sorosilicate

...Cations such as Mg 2+ , Fe 2+ , and Ca 2+ are ...

Delphinium grandiflorum (English spelling) Delphinium grandiflorum

… [Eiichi Asayama]. … *Some of the terminology th...