Proportionality - Fins

Japanese: 比例 - ひれい
Proportionality - Fins

When the relationship between two positive numbers x and y is y / x = a , i.e. y = ax ( a is a constant), y is said to be proportional or directly proportional to x , and a is called the proportionality constant. In this case, x = (1/ a ) y also holds, so if y is proportional to x , then x is proportional to y . To summarize, y and x are also said to be proportional. When y is proportional to x, if the values ​​of y corresponding to x values ​​x1 and x2 are y1 and y2, then y1 : x1 = y2 : x2 , i.e. y2 : y1 = x2 : x1 holds . Therefore , if the value of x becomes k times , the value of y also becomes k times ( k > 0). Conversely, if this holds for any positive number k , it can be easily shown that y and x are proportional.

When two positive numbers, x and y , have the relationship xy = a , or y = a / x (where a is a constant), y is said to be inversely proportional to x , or inversely proportional to x , with a being called the proportionality constant. In this case, it is also clear that x is inversely proportional to y , so y and x are also said to be inversely proportional. When y is inversely proportional to x , if the values ​​of y corresponding to x values ​​x1 and x2 are y1 and y2 , then x1y1 = x2y2 , or y2 : y1 = x1 : x2 , holds true . Therefore, if the value of x becomes k times, the value of y becomes 1/ k times ( k > 0). Conversely, if this holds true for any positive number k , it can also be shown that y and x are inversely proportional.

There are many examples of proportional and inverse proportional relationships. For example, in a triangle, if the length of the base is constant, the height and area are proportional, and if the area is constant, the height and the length of the base are inversely proportional. The proportional and inverse proportional relationships can be extended to cases where x and y are not necessarily positive, with a non-zero number a as the proportionality constant. In general, when there is a relationship between two numbers x and y , y = axα (where a and α are non-zero constants), y is said to be proportional to the α power of x . Proportional and inverse proportional relationships are special cases where α=1 and α=-1, respectively. In addition, when α=2 and α=1/2, y is proportional to the square or square root of x . When α=-2, it is also said that y is inversely proportional to the square of x . When y is proportional to the α power of x , if the value of x becomes k times, the value of y becomes times ( k >0). For example, the area of ​​a circle is proportional to the square of its radius, and conversely, the radius is proportional to the square root of the area. Proportional relationships can also be considered for three or more variables. For example, when three numbers x , y , and z are related by z = axy (where a is a nonzero constant), z is said to be polyproportional, or simply proportional, to x and y . In this case, z is proportional to x if y is held constant. For example, the area of ​​a triangle is proportional to its height and base.

[Tsuneo Uetake]

Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

二つの正数xyとの間に、y/x=aすなわちy=axaは定数)という関係があるとき、yxに比例する、または正比例するといい、aを比例定数という。このときx=(1/a)yも成り立つから、yxに比例すれば、xyに比例する。そこで、これらをまとめて、yxは比例するともいう。yxに比例するとき、xの値x1x2に対応するyの値をy1y2とすれば、y1:x1y2:x2すなわちy2:y1x2:x1が成り立つ。したがって、xの値がk倍になれば、yの値もk倍になる(k>0)。逆に任意の正数kについて、このことが成り立てば、yxが比例することも容易に示される。

 二つの正数xyの間に、xy=aすなわちy=a/xaは定数)という関係があるとき、yxに反比例する、または逆比例するといい、aを比例定数という。このときxyに反比例することも明らかであるから、まとめて、yxは反比例するともいう。yxに反比例するとき、xの値x1x2に対応するyの値をy1y2とすればx1y1=x2y2すなわちy2:y1x1:x2が成り立つ。したがって、xの値がk倍になれば、yの値は1/k倍となる(k>0)。逆に、任意の正数kについて、このことが成り立てば、yxが反比例することも示される。

 比例、反比例関係の例はきわめて多い。たとえば、三角形において、底辺の長さを一定とすれば、高さと面積は比例し、面積を一定とすれば、高さと底辺の長さは反比例する。比例と反比例の関係は、ゼロでない数aを比例定数として、xyがかならずしも正でない場合にも拡張できる。一般に、二つの数xyとの間にy=axαa、αはゼロでない定数)という関係があるとき、yxα乗に比例するという。比例と反比例はそれぞれα=1,α=-1である特別な場合である。また、α=2,α=1/2とすれば、yxの平方に比例する、平方根に比例する場合になる。α=-2のときは、yxの平方に反比例するともいう。yxのα乗に比例するときは、xの値がk倍になれば、yの値はkα倍になる(k>0)。たとえば、円の面積はその半径の平方に比例し、逆に、半径は面積の平方根に比例する。比例関係はまた三つ以上の変数についても考えられる。たとえば、三つの数xyzの間にz=axyaはゼロでない定数)という関係があるとき、zxyに複比例する、または単に、比例するという。このとき、yを一定とすればzxに比例する。たとえば、三角形の面積は、その高さと底辺の長さに比例する。

[植竹恒男]

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Proportional counter

>>:  Fin-legged lizard (Finniped lizard) - Fin-legged lizard (English spelling) snake lizard

Recommend

Malay literature

Malay literature in Malaysia. In addition to oral ...

Wollaston prism

A polarizing prism that uses birefringence. It is ...

Hermitage Museum - Hermitage Museum (English)

The largest national art museum in Russia, locate...

Laridae

...A general term for birds in the Laridae family...

Motoharu Fujita

1879-1958 A geographer from the Taisho to Showa p...

Zinc sulfate

Zinc sulfate, commonly known as the heptahydrate,...

Wide - Uide

...On the seventh night of the celebration, the n...

Bistorta vivipara (English spelling) Bistortavivipara

...This plant group is sometimes called the Dryas...

Ctenuchidae

…In Japan, this family includes two other species...

Curl Wall - Karl Heki

...At the top of the valley, a cirque is formed t...

Berceo, Gonzalo de

[Born] Around 1195 [Died] about 1268. Spanish poet...

ISSC - Information Security System

The International Social Science Council is an umb...

Duiker - Daikar (English spelling) duiker

A general term for animals in the genus Duiker, o...

Uminokuchi [Hot Spring] - Uminokuchi

...The village area occupies the eastern slope of...

Thermal decomposition

The decomposition of molecules by heating. Used a...