Quadratic curve - nijikyokusen (English spelling) quadratic curve

Japanese: 二次曲線 - にじきょくせん(英語表記)quadratic curve
Quadratic curve - nijikyokusen (English spelling) quadratic curve

Quadratic equation on the plane ax 2 +2hxy+by 2 +2gx+2fy+c=0
For example, 5x 2 +4xy+2y 2 +2x+4y+2=0
If we rewrite it in an appropriate Cartesian coordinate system {,}, it becomes 6 2 + 2 = 3, so it is an ellipse.
a=b=c=1, h=g=f=0
The quadratic curve given by x 2 +y 2 =-1 has no real solutions. The curve described by this equation is called an imaginary circle, but since a circle is a type of ellipse, it is one of the imaginary ellipses. If the equation of a quadratic curve is factorized, for example, (x-y+2)(x+2y+1)=0
If so, this quadratic curve can be decomposed into a line where x-y+2=0 and a line where x+2y+1=0. In general, quadratic curves can be decomposed into two straight lines or not. When they are not decomposed, h 2 -ab>0,=0,<0
Depending on the curve, it may be a hyperbola, a parabola, or a real or imaginary ellipse; these curves are collectively called conic sections or proper quadratics.

If we express the equation of a quadratic curve in homogeneous coordinates x=X/Z, y=Y/Z, we get aX 2 +bY 2 +cZ 2 +2fYZ+2gZX+2hXY=0.
The intersection point with the line at infinity Z=0 is
aX2 +2hXY+ bY2 =0
It is the point (X,Y,0) obtained by the above formula. Therefore, depending on whether the discriminant h 2 -ab is positive, zero, or negative, we can see that a hyperbola intersects with the line at infinity at two points, a parabola is tangent, and an ellipse does not intersect. This is the characterization of a conic section using the line at infinity. When a quadratic curve is symmetric with respect to a certain point, this point is called the center of the quadratic curve under consideration. A quadratic curve with only one center is called central, and otherwise it is called non-central. An ellipse, a hyperbola, and two intersecting lines are central, while a parabola and two parallel lines are non-centred.

[Tachibana Shunichi]

Quadratic curve
©Shogakukan ">

Quadratic curve


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

平面上で二次方程式
  ax2+2hxy+by2+2gx+2fy+c=0
の解(x,y)全体がつくる図形をいう。たとえば
  5x2+4xy+2y2+2x+4y+2=0
は、適当な直交座標系{,}によって書き直せば62+2=3となるから楕円(だえん)である。また、
  a=b=c=1, h=g=f=0
である二次曲線はx2+y2=-1であるから実数解をもたない。この方程式が表す曲線を虚円というが、円は楕円の仲間であるから、虚楕円の一つである。二次曲線の式が因数分解して、たとえば
  (x-y+2)(x+2y+1)=0
のようになれば、この二次曲線はx-y+2=0なる直線とx+2y+1=0なる直線に分解する。一般に、二次曲線は二直線に分解する場合と分解しない場合がある。分解しない場合は
  h2-ab>0,=0,<0
に応じて、双曲線、放物線、実または虚の楕円になり、これらの曲線は円錐曲線(えんすいきょくせん)、または固有二次曲線と総称される。

 二次曲線の式を斉次(せいじ)座標x=X/Z,y=Y/Zで表せば
  aX2+bY2+cZ2+2fYZ+2gZX+2hXY=0
となり、無限遠直線Z=0との交点は、
  aX2+2hXY+bY2=0
により求められる点(X,Y,0)である。したがって、判別式h2-abの正、ゼロ、負に応じて、双曲線は無限遠直線と2点で交わる、放物線は接している、楕円は交わらない、ことがわかる。これが円錐曲線の無限遠直線を用いた特徴づけである。二次曲線がある点に関して対称であるとき、この点を、考える二次曲線の中心という。中心がただ一つの二次曲線を有心、それ以外のとき無心という。楕円、双曲線、交わる二直線の場合は有心であり、放物線、平行二直線は無心である。

[立花俊一]

二次曲線
©Shogakukan">

二次曲線


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Quadratic surface - Nijikyokumen

>>:  Rainbowfish - Nishikibera (English spelling)

Recommend

Nereus - Nereus (English spelling)

The sea god in Greek mythology. Son of Gaia. In H...

commensalism

…It is usually defined as a relationship between ...

shaking screen

…Vibrating screens in the broad sense are broadly...

Conversation piece

A term of art history used mainly in Britain to re...

Tachikawa style

A branch of Shingon Buddhism that arose in the la...

Commercial registration - Shogyo Touki

Registration in the commercial register based on ...

Ma'mun - Ma'mun (English spelling) al-Ma'mūn

The seventh caliph of the Abbasid dynasty (reigne...

Kiiretsuchi Torimochi - Kiiretsuchi Torimochi

A perennial plant of the family Pittosporum (APG ...

Township - Go

In ancient times, it was an administrative unit be...

Exclusive patent

〘 noun 〙① An official license for the right to mon...

Mangyan people - Mangyan people (English spelling)

A general term for the mountain people of Mindoro ...

Aucoumea klaineana (English spelling) Aucoumeaklaineana

…Frankincense and myrrh, which appear in the Bibl...

Inryoken - Inryoken

This dormitory was located in the southern part of...

Hair clipper

…The name hair clipper comes from the fact that i...

Nekhbet (English spelling)

She was an ancient Egyptian goddess. Like Mut, she...