Quadratic curve - nijikyokusen (English spelling) quadratic curve

Japanese: 二次曲線 - にじきょくせん(英語表記)quadratic curve
Quadratic curve - nijikyokusen (English spelling) quadratic curve

Quadratic equation on the plane ax 2 +2hxy+by 2 +2gx+2fy+c=0
For example, 5x 2 +4xy+2y 2 +2x+4y+2=0
If we rewrite it in an appropriate Cartesian coordinate system {,}, it becomes 6 2 + 2 = 3, so it is an ellipse.
a=b=c=1, h=g=f=0
The quadratic curve given by x 2 +y 2 =-1 has no real solutions. The curve described by this equation is called an imaginary circle, but since a circle is a type of ellipse, it is one of the imaginary ellipses. If the equation of a quadratic curve is factorized, for example, (x-y+2)(x+2y+1)=0
If so, this quadratic curve can be decomposed into a line where x-y+2=0 and a line where x+2y+1=0. In general, quadratic curves can be decomposed into two straight lines or not. When they are not decomposed, h 2 -ab>0,=0,<0
Depending on the curve, it may be a hyperbola, a parabola, or a real or imaginary ellipse; these curves are collectively called conic sections or proper quadratics.

If we express the equation of a quadratic curve in homogeneous coordinates x=X/Z, y=Y/Z, we get aX 2 +bY 2 +cZ 2 +2fYZ+2gZX+2hXY=0.
The intersection point with the line at infinity Z=0 is
aX2 +2hXY+ bY2 =0
It is the point (X,Y,0) obtained by the above formula. Therefore, depending on whether the discriminant h 2 -ab is positive, zero, or negative, we can see that a hyperbola intersects with the line at infinity at two points, a parabola is tangent, and an ellipse does not intersect. This is the characterization of a conic section using the line at infinity. When a quadratic curve is symmetric with respect to a certain point, this point is called the center of the quadratic curve under consideration. A quadratic curve with only one center is called central, and otherwise it is called non-central. An ellipse, a hyperbola, and two intersecting lines are central, while a parabola and two parallel lines are non-centred.

[Tachibana Shunichi]

Quadratic curve
©Shogakukan ">

Quadratic curve


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

平面上で二次方程式
  ax2+2hxy+by2+2gx+2fy+c=0
の解(x,y)全体がつくる図形をいう。たとえば
  5x2+4xy+2y2+2x+4y+2=0
は、適当な直交座標系{,}によって書き直せば62+2=3となるから楕円(だえん)である。また、
  a=b=c=1, h=g=f=0
である二次曲線はx2+y2=-1であるから実数解をもたない。この方程式が表す曲線を虚円というが、円は楕円の仲間であるから、虚楕円の一つである。二次曲線の式が因数分解して、たとえば
  (x-y+2)(x+2y+1)=0
のようになれば、この二次曲線はx-y+2=0なる直線とx+2y+1=0なる直線に分解する。一般に、二次曲線は二直線に分解する場合と分解しない場合がある。分解しない場合は
  h2-ab>0,=0,<0
に応じて、双曲線、放物線、実または虚の楕円になり、これらの曲線は円錐曲線(えんすいきょくせん)、または固有二次曲線と総称される。

 二次曲線の式を斉次(せいじ)座標x=X/Z,y=Y/Zで表せば
  aX2+bY2+cZ2+2fYZ+2gZX+2hXY=0
となり、無限遠直線Z=0との交点は、
  aX2+2hXY+bY2=0
により求められる点(X,Y,0)である。したがって、判別式h2-abの正、ゼロ、負に応じて、双曲線は無限遠直線と2点で交わる、放物線は接している、楕円は交わらない、ことがわかる。これが円錐曲線の無限遠直線を用いた特徴づけである。二次曲線がある点に関して対称であるとき、この点を、考える二次曲線の中心という。中心がただ一つの二次曲線を有心、それ以外のとき無心という。楕円、双曲線、交わる二直線の場合は有心であり、放物線、平行二直線は無心である。

[立花俊一]

二次曲線
©Shogakukan">

二次曲線


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Quadratic surface - Nijikyokumen

>>:  Rainbowfish - Nishikibera (English spelling)

Recommend

Heterosaccus papillosus (English spelling) Heterosaccuspapillosus

... The Sacculina confragosa is a flat, yellow co...

Gokei

A valley in the southwest of central Okayama Pref...

Akizaki Fukujusou - Akizaki Fukujusou

... Adonis vernalis L. (English name: Spring adon...

Varadero (English spelling)

Located in the northwest of Cuba, in Matanzas Prov...

Vegetables - Vegetables

Refers to mainly herbaceous plants cultivated and...

Cardano's formula - Cardano's formula

…But neither of them made their secrets public. C...

Scattering of flowers - Sange

Scattering flowers to praise and offer to Buddha....

Davis, NZ (English spelling)

… In addition, recent research has pointed out th...

Land Warfare

〘 noun 〙 Land battle. ※ Seiyo Kibun (around 1725) ...

Rozhdestvensky

A Russian naval officer. During the Russo-Japanese...

Sforzinda

…His works include the Sforza Castle tower, the O...

Intelle - Intelle

…In France, feudal law established the system of ...

Shibahama

Rakugo. The original form was created by San'...

Medical geography

A science that understands disease and death pheno...

Lower Hour - Gekoku

〘 noun 〙 The final time when an hour ( =two hours)...