Length - Nagasa (English)

Japanese: 長さ - ながさ(英語表記)length
Length - Nagasa (English)

When considered within a plane, two line segments that can be superimposed are said to be of equal length. Now, fix one line segment OE, and use it as a unit to correspond to a positive real value that represents the length of the other line segments. To do this, as in (1) of the figure , cut the line segment AB to an equal length to OE, and measure the remaining part in the same way using several equal parts of OE. Continue this operation. This is a common-sense way of measuring length, but in axiomatic geometry, axioms must be created that take into consideration the possibility of this operation. In Euclidean geometry, the Pythagorean theorem (Pythagorean theorem) holds. In a plane where the xy coordinate system has been introduced, the distance between A( a1 , a2 ) and B( b1 , b2 ) is given by the Cartesian coordinate system as follows:

Depending on how the theory is constructed, this may be derived as a theorem from other definitions, or it may be a definition in itself.

[Osamu Takenouchi]

Curve Length

When there are two points A and B on a curve L, the length between A and B on L is defined as follows. Take a number of points between A and B on L, and call them P 1 , P 2 , …, P n-1 (A=P 0 , B=P n ), in that order (see (2) in the figure ). Then, connect these points one by one with line segments to create a broken line. If the length of this broken line (the sum of the lengths of each line segment) converges to a limit value when the points are taken more densely, then the curve is said to have length, and this limit value is called the length between A and B on the curve. When a curve is given by x=f(t) and y=g(t), the condition for the curve to have length is that both f(t) and g(t) are functions of bounded variation. In particular, when the curve is smooth, that is, when both f(t) and g(t) are C first class functions (functions that are continuous with derivatives), the curve has length, which is expressed as follows:

where t 1 and t 2 are the parameter values ​​corresponding to A and B. If the curve is given in the form y=F(x), the formula for the length is

It is.

[Osamu Takenouchi]

Length of straight lines and curves (Diagram)
©Shogakukan ">

Length of straight lines and curves (Diagram)


Source: Shogakukan Encyclopedia Nipponica About Encyclopedia Nipponica Information | Legend

Japanese:

平面内で考えたとき、重ね合わすことのできる二つの線分を、長さが等しいという。いま、ある一つの線分OEを固定して、これを単位として他の線分の長さを表す正の実数値を対応させる。このためには、の(1)のように、線分ABをOEの長さに等しく切っていき、余った部分は、OEをいくつかに等分したものを使って同様に測る。この操作を継続していく。これは、常識的な長さの測り方であるが、公理的構成の幾何学においては、この操作が可能であるように配慮して公理をつくっていかなければならない。ユークリッド幾何学では、ピタゴラスの定理(三平方の定理)が成立する。xy座標系の導入された平面においては、直交座標系により、A(a1,a2),B(b1,b2)の距離は

となる。これは、理論の構成の仕方により、他の定義から定理として導かれることもあり、またこれ自身を定義とすることもある。

[竹之内脩]

曲線の長さ

曲線L上に2点A、Bがあるとき、LのA、Bの間の長さは、次のように定める。L上、A、B間に数多くの点をとり、それらを順にP1,P2,……,Pn-1(A=P0,B=Pnとする)とする(の(2))。そして、これらの点を次々と線分で結んで折れ線をつくる。この折れ線の長さ(各線分の長さの和)が、この点のとり方を密にしていったとき、ある極限値に収束するならば、この曲線は長さがあるといい、この極限値を曲線のA、B間の長さという。曲線がx=f(t),y=g(t)で与えられているとき、曲線が長さをもつための条件は、f(t),g(t)がともに有界変動の関数であることである。とくに、曲線が滑らかな曲線であるとき、すなわち、f(t),g(t)がともにC1級関数(導関数が存在して連続であるような関数)であるときは、曲線は長さを有し、それは、

に等しい。ただし、t1、t2はA、Bに対応するパラメーターの値である。もしも曲線がy=F(x)の形で与えられているときは、長さを与える式は、

である。

[竹之内脩]

直線、曲線の長さ〔図〕
©Shogakukan">

直線、曲線の長さ〔図〕


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

<<:  Nagasaka [town] - Nagasaka

>>:  Nakaza - Nakaza

Recommend

Risk liability - kikensekinin (English spelling) Gefährdungshaftung

A principle of tort liability that requires that a...

Autonomic nervous system disorder

Also known as autonomic nervous instability. This...

Goring, C.

… [Biological and psychological factors of crime]...

Okachotare Shinto Ritual

...Former National Shrine. In addition to the lio...

Kuramae market price - Kuramae soba

Also known as the storehouse market price or garde...

Allotope - Allotope

…(1) Phase 1 reaction The binding of an antigen a...

Yippee

(Noun) (The initials of the Yippie Youth Internati...

Nucleus -

〘noun〙① A spherical body found in the center of a ...

Corporate crime

Actions that a corporation or individual attempts ...

Look Back in Anger - Look Back in Fury

…The term was derived from the play Look Back in ...

Souzey, Gérard

Born December 8, 1918 in Angers. A French baritone...

Upper drainage standard - Upper drainage standard

...This law is for implementing the necessary reg...

Iimoriyama (Nagasaki)

…It faces Omura Bay to the east, Goto Nada to the...

Zhejiang conglomerate

This refers to a group of financiers and business...

Oshikoku - Oshikoku

...This is a pilgrimage route that visits the 88 ...